cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130404 Partial sums of A093178.

Original entry on oeis.org

1, 2, 3, 6, 7, 12, 13, 20, 21, 30, 31, 42, 43, 56, 57, 72, 73, 90, 91, 110, 111, 132, 133, 156, 157, 182, 183, 210, 211, 240, 241, 272, 273, 306, 307, 342, 343, 380, 381, 420, 421, 462, 463, 506, 507, 552, 553, 600, 601, 650, 651, 702, 703, 756, 757, 812, 813
Offset: 1

Views

Author

Klaus Brockhaus, May 25 2007

Keywords

Comments

Numbers n such that floor(n/2) is a positive triangular number. - Bruno Berselli, Sep 15 2014

Crossrefs

Programs

  • Magma
    &cat[ [ n^2-n+1, n*(n+1) ]: n in [1..29] ];
  • Mathematica
    Table[If[EvenQ[n], 1, n], {n, 0, 56}] // Accumulate (* Jean-François Alcover, Jun 10 2013 *)
    Accumulate[Join[{1},Riffle[Range[1,85,2],1]]] (* or *) LinearRecurrence[ {1,2,-2,-1,1},{1,2,3,6,7},90] (* Harvey P. Dale, Jun 01 2016 *)
  • PARI
    {s=0; for(n=1, 57, s=s+if(n%2>0, 1, n-1); print1(s, ","))}
    
  • PARI
    {for(n=1, 57, print1(if(n%2>0, (n^2+3)/4, (n^2+2*n)/4), ","))}
    

Formula

a(1) = 1; for n > 1, a(n) = a(n-1)+1 if n is odd, a(n) = a(n-1)+(n-1) if n is even.
a(n) = A002061((n+1)/2) = (n^2+3)/4 if n is odd, a(n) = A002378(n/2) = (n^2+2*n)/4 if n is even.
G.f.: x*(1+x-x^2+x^3)/((1-x)^3*(1+x)^2).
a(n) = A093178(n) - A093178(n-1).
a(1) = 1; a(n) = a(n-1) + n^(n mod 2) = (1/4)*(n^2 + 2n + 4 + (n mod 2)*(2n-1)). - Rolf Pleisch, Feb 04 2008
a(n) = (2*(n-1)*(n+2) + (2*n-3)*(-1)^n+7)/8. - Bruno Berselli, Mar 31 2011