cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A131599 Square roots of the numbers in A130448.

Original entry on oeis.org

1, 2, 3, 5, 6, 24, 26, 84, 284, 816, 1424, 1674, 149274, 278874, 280726, 2808716, 2963576, 8533626, 23558584, 27969274, 28769826, 29804174, 47778874, 88769826, 282980174, 297956374, 884776174, 934198626, 1645509274, 2660505174, 2794331374, 2829841374
Offset: 1

Views

Author

Martin Raab, Aug 31 2007

Keywords

Examples

			24^2=576 and none of the substrings 5, 7, 6, 57, 76 or 56 is a square number.
		

Crossrefs

Cf. A130448.

Extensions

a(31)-a(32) from Giovanni Resta, Jan 08 2018

A238334 Squares that do not contain a shorter substring that is a square.

Original entry on oeis.org

0, 1, 4, 9, 25, 36, 576, 676, 5776, 27556, 33856, 538756, 586756, 665856, 682276, 763876, 767376, 853776, 872356, 2637376, 2775556, 2835856, 5635876, 6885376, 7376656, 22886656, 23755876, 23775376, 26275876, 26687556, 26873856, 32672656, 32878756, 37527876
Offset: 1

Views

Author

T. D. Noe, Mar 05 2014

Keywords

Crossrefs

Cf. A130448.

Programs

  • Mathematica
    fQ[n_] := Module[{d = IntegerDigits[n], len, ds, sq}, len = Length[d]; ds = FromDigits /@ Flatten[Table[Partition[d, i, 1], {i, len - 1}], 1]; sq = Select[ds, IntegerQ[Sqrt[#]] &]; sq == {}]; Select[Range[0, 10000]^2, fQ]
  • Python
    # see link for faster version for producing b-file
    from math import isqrt
    from itertools import count, islice
    def issquare(n): return isqrt(n)**2 == n
    def cond(s):
        if len(s) == 1: return True
        if any(d in s for d in "0149"): return False
        ss = (s[i:i+l] for i in range(len(s)) for l in range(2, len(s)))
        return not any(issquare(int(u)) for u in ss)
    def agen(): yield from (k**2 for k in count(0) if cond(str(k**2)))
    print(list(islice(agen(), 34))) # Michael S. Branicky, Feb 23 2023

A238903 Integers k such that (k^2 + (k+1)^2) has no square proper substring.

Original entry on oeis.org

0, 1, 3, 6, 11, 18, 36, 43, 56, 61, 106, 136, 168, 181, 206, 411, 431, 511, 518, 536, 606, 613, 1056, 1068, 1388, 1631, 1636, 1668, 1686, 1693, 1806, 1813, 1956, 1981, 2068, 2081, 3363, 3411, 3418, 3631, 3693, 3763, 4106, 4331, 5136, 5318, 5411, 5606, 5868, 6011, 6036, 6236, 6238, 6256, 6431, 6456, 6581, 10568, 10668, 10813, 11581, 11588, 11806, 11888
Offset: 1

Views

Author

Zak Seidov, Mar 07 2014

Keywords

Comments

Inspired by (and program used from) A238334.
Note that (m^2+(m+1)^2), for m>0, always ends with 5. Any other patterns?
From Robert Israel, Dec 09 2024: (Start)
The last two digits of k^2 + (k+1)^2 (if more than 2 digits) are 01, 05, 13, 21, 25, 41, 45, 61, 65, 81, or 85. The only ones of these that don't contain the squares 0, 1, 4, or 25 are 65 and 85, so all terms k > 3 of this sequence have k^2 + (k+1)^2 ending in 65 or 85. (End)

Examples

			1^2 + 2^2 = 5, 3^2 + 4^2 = 25, 6^2 + 7^2 = 85.
		

Crossrefs

Programs

  • Maple
    filter:= proc(m) local n,i,j,S;
      n:= m^2 + (m+1)^2;
    S:= {seq(seq(floor((n mod 10^i)/10^j),j=0..i-1),i=1 .. ilog10(n)+1)} minus {n};
      not ormap(issqr,S);
    end proc:
    select(filter, [$0..20000]); # Robert Israel, Dec 09 2024

A347819 Minimal elements for the base-10 representations of the primes greater than 10.

Original entry on oeis.org

11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 227, 251, 257, 277, 281, 349, 409, 449, 499, 521, 557, 577, 587, 727, 757, 787, 821, 827, 857, 877, 881, 887, 991, 2087, 2221, 5051, 5081, 5501, 5581, 5801, 5851, 6469, 6949, 8501
Offset: 1

Views

Author

Eric Chen, Sep 16 2021

Keywords

Comments

Sequence is finite with 77 terms, the largest being 5*10^30 + 27 (which can be written 5(0_28)27, where 0_28 means the string of 28 0's). See text file for proof (this file also has proofs for bases 2, 3, 4, 5, 6, 8, 12).
Minimal elements for the base b representations of the primes > b for other bases b: (see the text file for 9 <= b <= 16) (all written in base b)
b=2: {11}
b=3: {12, 21, 111}
b=4: {11, 13, 23, 31, 221}
b=5: {12, 21, 23, 32, 34, 43, 104, 111, 131, 133, 313, 401, 414, 3101, 10103, 14444, 30301, 33001, 33331, 44441, 300031, 10^95 + 13}
b=6: {11, 15, 21, 25, 31, 35, 45, 51, 4401, 4441, 40041}
b=7: {14, 16, 23, 25, 32, 41, 43, 52, 56, 61, 65, 113, 115, 131, 133, 155, 212, 221, 304, 313, 335, 344, 346, 364, 445, 515, 533, 535, 544, 551, 553, 1022, 1051, 1112, 1202, 1211, 1222, 2111, 3031, 3055, 3334, 3503, 3505, 3545, 4504, 4555, 5011, 5455, 5545, 5554, 6034, 6634, 11111, 11201, 30011, 30101, 31001, 31111, 33001, 33311, 35555, 40054, 100121, 150001, 300053, 351101, 531101, 1100021, 33333301, 5100000001, 33333333333333331} (conjectured, not proven)
b=8: {13, 15, 21, 23, 27, 35, 37, 45, 51, 53, 57, 65, 73, 75, 107, 111, 117, 141, 147, 161, 177, 225, 255, 301, 343, 361, 401, 407, 417, 431, 433, 463, 467, 471, 631, 643, 661, 667, 701, 711, 717, 747, 767, 3331, 3411, 4043, 4443, 4611, 5205, 6007, 6101, 6441, 6477, 6707, 6777, 7461, 7641, 47777, 60171, 60411, 60741, 444641, 500025, 505525, 3344441, 4444477, 5500525, 5550525, 55555025, 444444441, 744444441, 77774444441, 7777777777771, 555555555555525, (10^220-1)/9*40 + 7}.
Equivalently: primes > 10 such that no proper substring (i.e., deleting any positive number of digits) is again a prime > 10. - M. F. Hasler, May 03 2022

Examples

			277 is in this sequence because none of 2, 7, 27, 77 is a prime > 10.
857 is in this sequence because none of 8, 5, 7, 85, 87, 57 is a prime > 10.
991 is in this sequence because none of 9, 1, 99, 91 is a prime > 10.
149 is not in this sequence because 19 is subsequence of 149 and 19 is a prime > 10.
389 is not in this sequence because 89 is subsequence of 389 and 89 is a prime > 10.
439 is not in this sequence because 43 is subsequence of 439 and 43 is a prime > 10.
		

Crossrefs

Cf. A071062 (primes > 10 are not required).
Minimal sets for other sets: A071070 (for composites), A071071 (powers of 2), A071072 (multiples of 4), A071073 (multiples of 3), A111055 (primes of the form 4*n+1), A111056 (primes of the form 4*n+3), A114835 (palindromic primes), A130448 (minimal set of squares).

Programs

  • PARI
    a(n, k, b)=v=[]; for(r=1, length(digits(n, b)), if(r+length(digits(k, 2))-length(digits(n, b))>0 && digits(k, 2)[r+length(digits(k, 2))-length(digits(n, b))]==1, v=concat(v, digits(n, b)[r]))); fromdigits(v, b)
    iss(n, b)=for(k=1, 2^length(digits(n, b))-2, if(ispseudoprime(a(n, k, b)) && a(n, k, b)>b, return(0))); 1
    is(n, b=10)=isprime(n) && n>b && iss(n, b) \\ Test whether n is a minimal element for the base b representations of the primes > b. Default value b = 10 for this sequence.
    select( {is_A347819(n,b=10)=for(L=2, #n=digits(n,b), forvec(d=vector(L, i, [1,#n]), n[d[1]]&& isprime(fromdigits(vecextract(n,d),b))&& return(L==#n), 2))}, [1..8888]) \\ Better select among primes([1,N]). - M. F. Hasler, May 03 2022

Extensions

Edited by M. F. Hasler, May 03 2022
Showing 1-4 of 4 results.