cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A238335 Square roots of numbers in A238334.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 24, 26, 76, 166, 184, 734, 766, 816, 826, 874, 876, 924, 934, 1624, 1666, 1684, 2374, 2624, 2716, 4784, 4874, 4876, 5126, 5166, 5184, 5716, 5734, 6126, 6216, 6234, 7316, 7334, 7666, 8166, 8266, 8566, 8674, 8734, 8876, 9076, 9126, 9234
Offset: 1

Views

Author

T. D. Noe, Mar 05 2014

Keywords

Crossrefs

Cf. A238334.

A130448 Squares whose decimal representation contains no proper subsequence which is a positive square.

Original entry on oeis.org

1, 4, 9, 25, 36, 576, 676, 7056, 80656, 665856, 2027776, 2802276, 22282727076, 77770707876, 78807087076, 7888885568656, 8782782707776, 72822772707876, 555006880085056, 782280288087076, 827702888070276, 888288787822276, 2282820800707876, 7880082008070276, 80077778877070276, 88778000807227876, 782828878078078276, 872727072820287876
Offset: 1

Views

Author

Martin Raab, Aug 07 2007

Keywords

Comments

Is this sequence finite and if so what is the last term?
Yes, the sequence must be finite. This follows from a well-known result: there are no infinite antichains for the subsequence ordering. - Jeffrey Shallit, Mar 05 2014
If it exists, a(29) is greater than 10^18. - Mauro Fiorentini, Jan 24 2017
If it exists, a(51) is greater than 2*10^30. - Giovanni Resta, Jan 08 2018

Examples

			576 is in the list because none of its proper subsequences 5, 7, 6, 57, 76 or 56 are squares.
		

Crossrefs

Cf. A131599, A238334 (substrings).

Programs

  • Mathematica
    fQ[n_] := Module[{d = IntegerDigits[n], ds, sq}, ds = FromDigits /@ Union[Most[Rest[Subsets[d]]]]; sq = Select[ds, # > 0 && IntegerQ[Sqrt[#]] &, 1]; sq == {}]; Select[Range[0, 100000]^2, fQ] (* T. D. Noe, Mar 05 2014 *)
  • PARI
    isok(n) = {my(d = digits(n)); for (k = 1, #d, for (j= 1, #d - k + 1, if (j != #d, sd = vector(j, i, d[k+i-1]); nsd = fromdigits(sd); if (nsd && issquare(nsd), return(0));););); return (1);} \\ Michel Marcus, Apr 21 2018
    
  • Python
    # see linked program for faster version
    from math import isqrt
    from itertools import chain, combinations as C, count, islice
    def issquare(n): return isqrt(n)**2 == n
    def psets(s): # nonempty proper subsets of s
        return chain.from_iterable(C(s, r) for r in range(1, len(s)))
    def cond(s):
        ss = ("".join(t) for t in psets(s) if t[0] != "0")
        return not any(issquare(int(u)) for u in ss)
    def agen(): yield from (k**2 for k in count(1) if cond(str(k**2)))
    print(list(islice(agen(), 15))) # Michael S. Branicky, Feb 23 2023

Extensions

Edited by N. J. A. Sloane, Sep 14 2007
a(23)-a(28) from Mauro Fiorentini, Jan 24 2017

A238903 Integers k such that (k^2 + (k+1)^2) has no square proper substring.

Original entry on oeis.org

0, 1, 3, 6, 11, 18, 36, 43, 56, 61, 106, 136, 168, 181, 206, 411, 431, 511, 518, 536, 606, 613, 1056, 1068, 1388, 1631, 1636, 1668, 1686, 1693, 1806, 1813, 1956, 1981, 2068, 2081, 3363, 3411, 3418, 3631, 3693, 3763, 4106, 4331, 5136, 5318, 5411, 5606, 5868, 6011, 6036, 6236, 6238, 6256, 6431, 6456, 6581, 10568, 10668, 10813, 11581, 11588, 11806, 11888
Offset: 1

Views

Author

Zak Seidov, Mar 07 2014

Keywords

Comments

Inspired by (and program used from) A238334.
Note that (m^2+(m+1)^2), for m>0, always ends with 5. Any other patterns?
From Robert Israel, Dec 09 2024: (Start)
The last two digits of k^2 + (k+1)^2 (if more than 2 digits) are 01, 05, 13, 21, 25, 41, 45, 61, 65, 81, or 85. The only ones of these that don't contain the squares 0, 1, 4, or 25 are 65 and 85, so all terms k > 3 of this sequence have k^2 + (k+1)^2 ending in 65 or 85. (End)

Examples

			1^2 + 2^2 = 5, 3^2 + 4^2 = 25, 6^2 + 7^2 = 85.
		

Crossrefs

Programs

  • Maple
    filter:= proc(m) local n,i,j,S;
      n:= m^2 + (m+1)^2;
    S:= {seq(seq(floor((n mod 10^i)/10^j),j=0..i-1),i=1 .. ilog10(n)+1)} minus {n};
      not ormap(issqr,S);
    end proc:
    select(filter, [$0..20000]); # Robert Israel, Dec 09 2024
Showing 1-3 of 3 results.