cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130482 a(n) = Sum_{k=0..n} (k mod 4) (Partial sums of A010873).

Original entry on oeis.org

0, 1, 3, 6, 6, 7, 9, 12, 12, 13, 15, 18, 18, 19, 21, 24, 24, 25, 27, 30, 30, 31, 33, 36, 36, 37, 39, 42, 42, 43, 45, 48, 48, 49, 51, 54, 54, 55, 57, 60, 60, 61, 63, 66, 66, 67, 69, 72, 72, 73, 75, 78, 78, 79, 81, 84, 84, 85, 87, 90, 90, 91, 93, 96, 96, 97, 99, 102, 102, 103, 105
Offset: 0

Views

Author

Hieronymus Fischer, May 29 2007

Keywords

Comments

Let A be the Hessenberg n X n matrix defined by: A[1,j]=j mod 4, A[i,i]:=1, A[i,i-1]=-1. Then, for n>=1, a(n)=det(A). - Milan Janjic, Jan 24 2010

Crossrefs

Programs

  • GAP
    a:=[0,1,3,6,6];; for n in [6..71] do a[n]:=a[n-1]+a[n-4]-a[n-5]; od; a; # G. C. Greubel, Aug 31 2019
  • Magma
    I:=[0,1,3,6,6]; [n le 5 select I[n] else Self(n-1) + Self(n-4) - Self(n-5): n in [1..71]]; // G. C. Greubel, Aug 31 2019
    
  • Maple
    a:=n->add(chrem( [n,j], [1,4] ),j=1..n):seq(a(n), n=0..70); # Zerinvary Lajos, Apr 07 2009
  • Mathematica
    Table[(6*n +(1-(-1)^n)*(1+2*I^(n+1)))/4, {n,0,70}] (* G. C. Greubel, Aug 31 2019 *)
    LinearRecurrence[{1,0,0,1,-1},{0,1,3,6,6},80] (* Harvey P. Dale, Feb 16 2024 *)
  • PARI
    a(n) = (1 - (-1)^n - (2*I)*(-I)^n + (2*I)*I^n + 6*n) / 4 \\ Colin Barker, Oct 15 2015
    
  • Sage
    def A130482_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(x*(1+2*x+3*x^2)/((1-x^4)*(1-x))).list()
    A130482_list(70) # G. C. Greubel, Aug 31 2019
    

Formula

a(n) = 6*floor(n/4) + A010873(n)*(A010873(n)+1)/2.
G.f.: x*(1 + 2*x + 3*x^2)/((1-x^4)*(1-x)).
a(n) = (1 - (-1)^n - (2*i)*(-i)^n + (2*i)*i^n + 6*n) / 4 where i = sqrt(-1). - Colin Barker, Oct 15 2015
a(n) = 3*n/2 + (n mod 2)* ( (n-1) mod 4 ) - (n mod 2)/2. - Ammar Khatab, Aug 27 2020
E.g.f.: (3*x*exp(x) - 2*sin(x) + sinh(x))/2. - Stefano Spezia, Apr 22 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(4*sqrt(3)) + log(3)/4. - Amiram Eldar, Sep 17 2022