cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130486 a(n) = Sum_{k=0..n} (k mod 8) (Partial sums of A010877).

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 28, 29, 31, 34, 38, 43, 49, 56, 56, 57, 59, 62, 66, 71, 77, 84, 84, 85, 87, 90, 94, 99, 105, 112, 112, 113, 115, 118, 122, 127, 133, 140, 140, 141, 143, 146, 150, 155, 161, 168, 168, 169, 171, 174, 178, 183, 189, 196, 196, 197, 199, 202, 206
Offset: 0

Views

Author

Hieronymus Fischer, May 31 2007

Keywords

Comments

Let A be the Hessenberg n X n matrix defined by A[1,j] = j mod 8, A[i,i]:=1, A[i,i-1]=-1. Then, for n >= 1, a(n)=det(A). - Milan Janjic, Jan 24 2010

Crossrefs

Programs

  • GAP
    a:=[0,1,3,6,10,15,21,28,28];; for n in [10..71] do a[n]:=a[n-1]+a[n-8]-a[n-9]; od; a; # G. C. Greubel, Aug 31 2019
  • Magma
    I:=[0,1,3,6,10,15,21,28,28]; [n le 9 select I[n] else Self(n-1) + Self(n-8) - Self(n-9): n in [1..71]]; // G. C. Greubel, Aug 31 2019
    
  • Maple
    seq(coeff(series(x*(1-8*x^7+7*x^8)/((1-x^8)*(1-x)^3), x, n+1), x, n), n = 0 .. 40); # G. C. Greubel, Aug 31 2019
  • Mathematica
    Array[28 Floor[#1/8] + #2 (#2 + 1)/2 & @@ {#, Mod[#, 8]} &, 61, 0] (* Michael De Vlieger, Apr 28 2018 *)
    Accumulate[PadRight[{},100,Range[0,7]]] (* Harvey P. Dale, Dec 21 2018 *)
  • PARI
    a(n) = sum(k=0, n, k % 8); \\ Michel Marcus, Apr 28 2018
    
  • Sage
    def A130486_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(x*(1-8*x^7+7*x^8)/((1-x^8)*(1-x)^3)).list()
    A130486_list(70) # G. C. Greubel, Aug 31 2019
    

Formula

a(n) = 28*floor(n/8) + A010877(n)*(A010877(n) + 1)/2.
G.f.: (Sum_{k=1..7} k*x^k)/((1-x^8)*(1-x)).
G.f.: x*(1 - 8*x^7 + 7*x^8)/((1-x^8)*(1-x)^3).