cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A010879 Final digit of n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0
Offset: 0

Views

Author

Keywords

Comments

Also decimal expansion of 137174210/1111111111 = 0.1234567890123456789012345678901234... - Jason Earls, Mar 19 2001
In general the base k expansion of A062808(k)/A048861(k) (k>=2) will produce the numbers 0,1,2,...,k-1 repeated with period k, equivalent to the sequence n mod k. The k-digit number in base k 123...(k-1)0 (base k) expressed in decimal is A062808(k), whereas A048861(k) = k^k-1. In particular, A062808(10)/A048861(10)=1234567890/9999999999=137174210/1111111111.
a(n) = n^5 mod 10. - Zerinvary Lajos, Nov 04 2009

Crossrefs

Cf. A008959, A008960, A070514. - Doug Bell, Jun 15 2015
Partial sums: A130488. Other related sequences A130481, A130482, A130483, A130484, A130485, A130486, A130487.

Programs

Formula

a(n) = n mod 10.
Periodic with period 10.
From Hieronymus Fischer, May 31 and Jun 11 2007: (Start)
Complex representation: a(n) = 1/10*(1-r^n)*sum{1<=k<10, k*product{1<=m<10,m<>k, (1-r^(n-m))}} where r=exp(Pi/5*i) and i=sqrt(-1).
Trigonometric representation: a(n) = (256/5)^2*(sin(n*Pi/10))^2 * sum{1<=k<10, k*product{1<=m<10,m<>k, (sin((n-m)*Pi/10))^2}}.
G.f.: g(x) = (Sum_{k=1..9} k*x^k)/(1-x^10) = -x*(1 +2*x +3*x^2 +4*x^3 +5*x^4 +6*x^5 +7*x^6 +8*x^7 +9*x^8) / ( (x-1) *(1+x) *(x^4+x^3+x^2+x+1) *(x^4-x^3+x^2-x+1) ).
Also: g(x) = x*(9*x^10-10*x^9+1)/((1-x^10)*(1-x)^2).
a(n) = n mod 2+2*(floor(n/2)mod 5) = A000035(n) + 2*A010874(A004526(n)).
Also: a(n) = n mod 5+5*(floor(n/5)mod 2) = A010874(n)+5*A000035(A002266(n)). (End)
a(n) = 10*{n/10}, where {x} means fractional part of x. - Enrique Pérez Herrero, Jul 30 2009
a(n) = n - 10*A059995(n). - Reinhard Zumkeller, Jul 26 2011
a(n) = n^k mod 10, for k > 0, where k mod 4 = 1. - Doug Bell, Jun 15 2015

Extensions

Formula section edited for better readability by Hieronymus Fischer, Jun 13 2012

A010877 a(n) = n mod 8.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0
Offset: 0

Views

Author

Keywords

Comments

The rightmost digit in the base-8 representation of n. Also, the equivalent value of the three rightmost digits in the base-2 representation of n. - Hieronymus Fischer, Jun 12 2007

Crossrefs

Partial sums: A130486. Other related sequences A130481, A130482, A130483, A130484, A130485.

Programs

Formula

Complex representation: a(n) = (1/8)*(1-r^n)*Sum_{k=1..7} k*Product_{m=1..7, m<>k} (1 - r^(n-m)) where r = exp(Pi/4*i) = (1+i)*sqrt(2)/2 and i=sqrt(-1).
Trigonometric representation: a(n) = 256*(sin(n*Pi/8))^2*Sum_{k=1..7} k*Product_{m=1..7, m<>k} (sin((n-m)*Pi/8))^2.
G.f.: g(x) = (Sum_{k=1..7}, k*x^k)/(1-x^8).
Also: g(x) = x(7x^8-8x^7+1)/((1-x^8)(1-x)^2). - Hieronymus Fischer, May 31 2007
a(n) = n mod 2 + 2*(floor(n/2) mod 4) = A000035(n) + 2*A010873(A004526(n)).
a(n) = n mod 4 + 4*(floor(n/4) mod 2) = A010873(n) + 4*A000035(A002265(n)).
a(n) = n mod 2 + 2*(floor(n/2) mod 2) + 4*(floor(n/4) mod 2) = A000035(n) + 2*A000035(A004526(n)) + 4*A000035(A002265(n)). - Hieronymus Fischer, Jun 12 2007
a(n) = (1/2)*(7 - (-1)^n - 2*(-1)^(b/4) - 4*(-1)^((b - 2 + 2*(-1)^(b/4))/8)) where b = 2n - 1 + (-1)^n. - Hieronymus Fischer, Jun 12 2007
General formula for period 2^k: a(n) = (1/2)*(2^k - 1 - Sum_{j=0..k-1} 2^j*(-1)^p(j,n)) where p(j,n) is defined recursively by p(0,n)=n, p(j,n) = (1/4)*(2*p(j-1,n) - 1 + (-1)^p(j-1,n)). - Hieronymus Fischer, Jun 14 2007
a(n) = floor(1234567/99999999*10^(n+1)) mod 10. - Hieronymus Fischer, Jan 03 2013
a(n) = floor(48913/2396745*8^(n+1)) mod 8. - Hieronymus Fischer, Jan 04 2013

Extensions

Formula section re-edited for better readability by Hieronymus Fischer

A010878 a(n) = n mod 9.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5
Offset: 0

Views

Author

Keywords

Comments

Periodic with period of length 9. The digital root of n (A010888) is a very similar sequence.
The rightmost digit in the base-9 representation of n. Also, the equivalent value of the two rightmost digits in the base-3 representation of n. - Hieronymus Fischer, Jun 11 2007

Crossrefs

Partial sums: A130487. Other related sequences A130481, A130482, A130483, A130484, A130485, A130486.

Programs

Formula

Complex representation: a(n)=(1/9)*(1-r^n)*sum{1<=k<9, k*product{1<=m<9,m<>k, (1-r^(n-m))}} where r=exp(2*pi/9*i) and i=sqrt(-1). Trigonometric representation: a(n)=(256/9)^2*(sin(n*pi/9))^2*sum{1<=k<9, k*product{1<=m<9,m<>k, (sin((n-m)*pi/9))^2}}. G.f.: g(x)=(sum{1<=k<9, k*x^k})/(1-x^9). Also: g(x)=x(8x^9-9x^8+1)/((1-x^9)(1-x)^2). - Hieronymus Fischer, May 31 2007
a(n) = n mod 3 + 3*(floor(n/3)mod 3) = A010872(n) + 3*A010872(A002264(n)). - Hieronymus Fischer, Jun 11 2007
a(n) = floor(12345678/999999999*10^(n+1)) mod 10. - Hieronymus Fischer, Jan 03 2013
a(n) = floor(1513361/96855122*9^(n+1)) mod 9. - Hieronymus Fischer, Jan 04 2013

A010880 a(n) = n mod 11.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0
Offset: 0

Views

Author

Keywords

Crossrefs

Partial sums: A130489. Other related sequences A130481, A130482, A130483, A130484, A130485, A130486, A130487, A130488.

Programs

Formula

From Hieronymus Fischer, Sep 30 2007: (Start)
a(n) = (1/11)*(1-r^n)*sum{1<=k<11, k*product{1<=m<11,m<>k, (1-r^(n-m))}} where r=exp(2*Pi/11*i) and i=sqrt(-1).
a(n) = (1024/11)^2*(sin(n*Pi/11))^2*sum{1<=k<11, k*product{1<=m<11,m<>k, (sin((n-m)*Pi/11))^2}}.
G.f.: (sum{1<=k<11, k*x^k})/(1-x^11).
G.f.: x*(10*x^11-11*x^10+1)/((1-x^11)*(1-x)^2). (End)

Extensions

More terms from Correction. Typo at the sum formula for the g.f.: the summation index should not read "1<=k<10" but "1<=k<11" (see corrected formula).

A010881 Simple periodic sequence: n mod 12.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
Offset: 0

Views

Author

Keywords

Comments

The value of the rightmost digit in the base-12 representation of n. - Hieronymus Fischer, Jun 11 2007

Examples

			a(27) = 3 since 27 = 12*2+3.
		

Crossrefs

Partial sums: A130490. Other related sequences A130481, A130482, A130483, A130484, A130485, A130486, A130487, A130488, A130489.

Programs

Formula

From Hieronymus Fischer, May 31 2007: (Start)
a(n) = n mod 12.
Complex representation: a(n) = (1/12)*(1-r^n)*Sum_{k=1..11} k*Product_{m=1..11, m<>k} (1-r^(n-m)) where r = exp(Pi/6*i) = (sqrt(3)+i)/2 and i = sqrt(-1).
Trigonometric representation: a(n) = (512/3)^2*(sin(n*Pi/12))^2*Sum_{k=1..11} k*Product_{m=1..11, m<>k} (sin((n-m)*Pi/12))^2.
G.f.: (Sum_{k=1..11} k*x^k)/(1-x^12).
G.f.: x*(11*x^12-12*x^11+1)/((1-x^12)*(1-x)^2). (End)
From Hieronymus Fischer, Jun 11 2007: (Start)
a(n) = (n mod 2)+2*(floor(n/2) mod 6) = A000035(n)+2*A010875(A004526(n)).
a(n) = (n mod 3)+3*(floor(n/3) mod 4) = A010872(n)+3*A010873(A002264(n)).
a(n) = (n mod 4)+4*(floor(n/4) mod 3) = A010873(n)+4*A010872(A002265(n)).
a(n) = (n mod 6)+6*(floor(n/6) mod 2) = A010875(n)+6*A000035(A152467(n)).
a(n) = (n mod 2)+2*(floor(n/2) mod 2)+4*(floor(n/4) mod 3) = A000035(n)+2*A000035(A004526(n))+4*A010872(A002265(n)). (End)
a(A001248(k) + 17) = 6 for k>2. - Reinhard Zumkeller, May 12 2010
a(n) = A034326(n+1)-1. - M. F. Hasler, Sep 25 2014

A130487 a(n) = Sum_{k=0..n} (k mod 9) (Partial sums of A010878).

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 36, 36, 37, 39, 42, 46, 51, 57, 64, 72, 72, 73, 75, 78, 82, 87, 93, 100, 108, 108, 109, 111, 114, 118, 123, 129, 136, 144, 144, 145, 147, 150, 154, 159, 165, 172, 180, 180, 181, 183, 186, 190, 195, 201, 208, 216, 216, 217, 219, 222, 226
Offset: 0

Views

Author

Hieronymus Fischer, May 31 2007

Keywords

Comments

Let A be the Hessenberg n X n matrix defined by A[1,j]=j mod 9, A[i,i]:=1, A[i,i-1]=-1. Then, for n >= 1, a(n)=det(A). - Milan Janjic, Jan 24 2010

Crossrefs

Programs

  • GAP
    a:=[0,1,3,6,10,15,21,28,36,36];; for n in [11..71] do a[n]:=a[n-1]+a[n-9]-a[n-10]; od; a; # G. C. Greubel, Aug 31 2019
  • Magma
    I:=[0,1,3,6,10,15,21,28,36,36]; [n le 10 select I[n] else Self(n-1) + Self(n-9) - Self(n-10): n in [1..71]]; // G. C. Greubel, Aug 31 2019
    
  • Maple
    seq(coeff(series(x*(1-9*x^8+8*x^9)/((1-x^9)*(1-x)^3), x, n+1), x, n), n = 0 .. 70); # G. C. Greubel, Aug 31 2019
  • Mathematica
    Accumulate[PadRight[{},120,Range[0,8]]] (* Harvey P. Dale, Dec 19 2018 *)
    Accumulate[Mod[Range[0,100],9]] (* Harvey P. Dale, Oct 16 2021 *)
  • PARI
    a(n) = sum(k=0, n, k % 9); \\ Michel Marcus, Apr 28 2018
    
  • Sage
    def A130487_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(x*(1-9*x^8+8*x^9)/((1-x^9)*(1-x)^3)).list()
    A130487_list(70) # G. C. Greubel, Aug 31 2019
    

Formula

a(n) = 36*floor(n/9) + A010878(n)*(A010878(n) + 1)/2.
G.f.: (Sum_{k=1..8} k*x^k)/((1-x^9)*(1-x)).
G.f.: x*(1 - 9*x^8 + 8*x^9)/((1-x^9)*(1-x)^3).

A130488 a(n) = Sum_{k=0..n} (k mod 10) (Partial sums of A010879).

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 45, 46, 48, 51, 55, 60, 66, 73, 81, 90, 90, 91, 93, 96, 100, 105, 111, 118, 126, 135, 135, 136, 138, 141, 145, 150, 156, 163, 171, 180, 180, 181, 183, 186, 190, 195, 201, 208, 216, 225, 225, 226, 228, 231, 235, 240, 246, 253
Offset: 0

Views

Author

Hieronymus Fischer, May 31 2007

Keywords

Comments

Let A be the Hessenberg n X n matrix defined by A[1,j] = j mod 10, A[i,i]:=1, A[i,i-1]=-1. Then, for n >= 1, a(n)=det(A). - Milan Janjic, Jan 24 2010

Crossrefs

Programs

  • GAP
    a:=[0,1,3,6,10,15,21,28,36,45,45];; for n in [12..61] do a[n]:=a[n-1]+a[n-10]-a[n-11]; od; a; # G. C. Greubel, Aug 31 2019
    
  • Magma
    I:=[0,1,3,6,10,15,21,28,36,45,45]; [n le 11 select I[n] else Self(n-1) + Self(n-10) - Self(n-11): n in [1..61]]; // G. C. Greubel, Aug 31 2019
    
  • Maple
    seq(coeff(series(x*(1-10*x^9+9*x^10)/((1-x^10)*(1-x)^3), x, n+1), x, n), n = 0..60); # G. C. Greubel, Aug 31 2019
  • Mathematica
    LinearRecurrence[{1,0,0,0,0,0,0,0,0,1,-1}, {0,1,3,6,10,15,21,28,36,45, 45}, 60] (* G. C. Greubel, Aug 31 2019 *)
  • PARI
    a(n) = sum(k=0, n, k % 10); \\ Michel Marcus, Apr 28 2018
    
  • Python
    def A130488(n):
        a, b = divmod(n,10)
        return 45*a+(b*(b+1)>>1) # Chai Wah Wu, Jul 27 2022
  • Sage
    def A130488_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(x*(1-10*x^9+9*x^10)/((1-x^10)*(1-x)^3)).list()
    A130488_list(60) # G. C. Greubel, Aug 31 2019
    

Formula

a(n) = 45*floor(n/10) + A010879(n)*(A010879(n) + 1)/2.
G.f.: (Sum_{k=1..9} k*x^k)/((1-x^10)*(1-x)).
G.f.: x*(1 - 10*x^9 + 9*x^10)/((1-x^10)*(1-x)^3).

A130909 Simple periodic sequence (n mod 16).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
Offset: 0

Views

Author

Hieronymus Fischer, Jun 11 2007

Keywords

Comments

The value of the rightmost digit in the base-16 representation of n. Also, the equivalent value of the two rightmost digits in the base-4 representation of n. Also, the equivalent value of the four rightmost digits in the base-2 representation of n.

Crossrefs

Cf. partial sums A130910. Other related sequences A010872, A010873, A130481, A130482, A130483, A130486.
See A010877 for a general formula in terms of powers of -1 (for period 2^k).

Programs

Formula

a(n) = n mod 16 = n-16*floor(n/16).
G.f.: g(x) = (Sum_{k=1..15} k*x^k)/(1-x^16).
G.f.: g(x) = x(15x^16-16x^15+1)/((1-x^16)(1-x)^2).
a(n) = A000035(n) + 2*A010877(A004526(n)).
a(n) = A010873(n) + 4*A010873(A002265(n)).
a(n) = A010877(n) + 8*A000035(floor(n/8)).
a(n) = (1/2)*(15 - ( - 1)^n - 2*( - 1)^(b/4) - 4*( - 1)^((b - 2 + 2*( - 1)^(b/4))/8) - 8*( - 1)^((b - 6 + ( - 1)^n + 2*( - 1)^(b/4) + 4*( - 1)^((b - 2 + 2*( - 1)^(b/4))/8))/16)) where b = 2n - 1 + ( - 1)^n.
a(n) = n mod 2+2*(floor(n/2)mod 2)+4*(floor(n/4)mod 2)+8*(floor(n/8)mod 2).
a(n) = (1/2)*(15-(-1)^n-2*(-1)^floor(n/2)-4*(-1)^floor(n/4)-8*(-1)^floor(n/= 8)).
Complex representation: a(n) = (1/16)*(1-r^n)*sum{1<=k<16, k*product{1<=m<16,m<>k, (1-r^(n-m))}} where r=exp(Pi/8*i)=(sqrt(2+sqrt(2))+i*sqrt(2-sqrt(2)))/2 and i=sqrt(-1).
Trigonometric representation: a(n) = 2^22*(sin(n*Pi/16))^2*sum{1<=k<16, k*product{1<=m<16,m<>k, (sin((n-m)*Pi/16))^2}}.
a(n) = (1/2)*(15-(-1)^p(0,n)-2*(-1)^p(1,n)-4*(-1)^p(2,n)-8*(-1)^p(3,n)) where p(k,n) is defined recursively by p(0,n)=n, p(k,n)=1/4*(2*p(k-1,n)-1+(-1)^p(k-1,n)).

A010887 Simple periodic sequence: repeat 1,2,3,4,5,6,7,8.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1
Offset: 0

Views

Author

Keywords

Comments

Partial sums are given by A130486(n)+n+1. - Hieronymus Fischer, Jun 08 2007
1371742/11111111 = 0.123456781234567812345678... - Eric Desbiaux, Nov 03 2008

Crossrefs

Cf. A177034 (decimal expansion of (9280+3*sqrt(13493990))/14165). - Klaus Brockhaus, May 01 2010

Programs

  • Haskell
    a010887 = (+ 1) . flip mod 8
    a010887_list = cycle [1..8]
    -- Reinhard Zumkeller, Nov 09 2014, Mar 04 2014
    
  • Mathematica
    PadRight[{},90,Range[8]] (* Harvey P. Dale, May 10 2022 *)
  • Python
    def A010887(n): return 1 + (n & 7) # Chai Wah Wu, May 25 2022

Formula

a(n) = 1 + (n mod 8) - Paolo P. Lava, Nov 21 2006
From Hieronymus Fischer, Jun 08 2007: (Start)
a(n) = (1/2)*(9 - (-1)^n - 2*(-1)^(b/4) - 4*(-1)^((b - 2 + 2*(-1)^(b/4))/8)) where b = 2n - 1 + (-1)^n.
Also a(n) = A010877(n) + 1.
G.f.: g(x) = (1/(1-x^8))*Sum_{k=0..7} (k+1)*x^k.
Also: g(x) = (8x^9 - 9x^8 + 1)/((1-x^8)*(1-x)^2). (End)

A130489 a(n) = Sum_{k=0..n} (k mod 11) (Partial sums of A010880).

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 55, 56, 58, 61, 65, 70, 76, 83, 91, 100, 110, 110, 111, 113, 116, 120, 125, 131, 138, 146, 155, 165, 165, 166, 168, 171, 175, 180, 186, 193, 201, 210, 220, 220, 221, 223, 226, 230, 235, 241, 248, 256, 265, 275, 275, 276
Offset: 0

Views

Author

Hieronymus Fischer, May 31 2007

Keywords

Comments

Let A be the Hessenberg n X n matrix defined by A[1,j] = j mod 11, A[i,i]:=1, A[i,i-1]=-1. Then, for n >= 1, a(n)=det(A). - Milan Janjic, Jan 24 2010

Crossrefs

Programs

  • GAP
    a:=[0,1,3,6,10,15,21,28,36,45, 55,55];; for n in [13..61] do a[n]:=a[n-1]+a[n-11]-a[n-12]; od; a; # G. C. Greubel, Aug 31 2019
  • Magma
    I:=[0,1,3,6,10,15,21,28,36,45,55,55]; [n le 12 select I[n] else Self(n-1) + Self(n-11) - Self(n-12): n in [1..61]]; // G. C. Greubel, Aug 31 2019
    
  • Maple
    seq(coeff(series(x*(1-11*x^10+10*x^11)/((1-x^11)*(1-x)^3), x, n+1), x, n), n = 0 .. 60); # G. C. Greubel, Aug 31 2019
  • Mathematica
    LinearRecurrence[{1,0,0,0,0,0,0,0,0,0,1,-1}, {0,1,3,6,10,15,21,28,36,45, 55,55}, 60] (* G. C. Greubel, Aug 31 2019 *)
    Accumulate[PadRight[{},80,Range[0,10]]] (* Harvey P. Dale, Jul 21 2021 *)
  • PARI
    a(n) = sum(k=0, n, k % 11); \\ Michel Marcus, Apr 28 2018
    
  • Sage
    def A130489_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(x*(1-11*x^10+10*x^11)/((1-x^11)*(1-x)^3)).list()
    A130489_list(60) # G. C. Greubel, Aug 31 2019
    

Formula

a(n) = 55*floor(n/11) + A010880(n)*(A010880(n) + 1)/2.
G.f.: (Sum_{k=1..10} k*x^k)/((1-x^11)*(1-x)).
G.f.: x*(1 - 11*x^10 + 10*x^11)/((1-x^11)*(1-x)^3).
Showing 1-10 of 12 results. Next