A130486 a(n) = Sum_{k=0..n} (k mod 8) (Partial sums of A010877).
0, 1, 3, 6, 10, 15, 21, 28, 28, 29, 31, 34, 38, 43, 49, 56, 56, 57, 59, 62, 66, 71, 77, 84, 84, 85, 87, 90, 94, 99, 105, 112, 112, 113, 115, 118, 122, 127, 133, 140, 140, 141, 143, 146, 150, 155, 161, 168, 168, 169, 171, 174, 178, 183, 189, 196, 196, 197, 199, 202, 206
Offset: 0
Links
- Shawn A. Broyles, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,1,-1).
Crossrefs
Programs
-
GAP
a:=[0,1,3,6,10,15,21,28,28];; for n in [10..71] do a[n]:=a[n-1]+a[n-8]-a[n-9]; od; a; # G. C. Greubel, Aug 31 2019
-
Magma
I:=[0,1,3,6,10,15,21,28,28]; [n le 9 select I[n] else Self(n-1) + Self(n-8) - Self(n-9): n in [1..71]]; // G. C. Greubel, Aug 31 2019
-
Maple
seq(coeff(series(x*(1-8*x^7+7*x^8)/((1-x^8)*(1-x)^3), x, n+1), x, n), n = 0 .. 40); # G. C. Greubel, Aug 31 2019
-
Mathematica
Array[28 Floor[#1/8] + #2 (#2 + 1)/2 & @@ {#, Mod[#, 8]} &, 61, 0] (* Michael De Vlieger, Apr 28 2018 *) Accumulate[PadRight[{},100,Range[0,7]]] (* Harvey P. Dale, Dec 21 2018 *)
-
PARI
a(n) = sum(k=0, n, k % 8); \\ Michel Marcus, Apr 28 2018
-
Sage
def A130486_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P(x*(1-8*x^7+7*x^8)/((1-x^8)*(1-x)^3)).list() A130486_list(70) # G. C. Greubel, Aug 31 2019
Comments