cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A130490 a(n) = Sum_{k=0..n} (k mod 12) (Partial sums of A010881).

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 66, 67, 69, 72, 76, 81, 87, 94, 102, 111, 121, 132, 132, 133, 135, 138, 142, 147, 153, 160, 168, 177, 187, 198, 198, 199, 201, 204, 208, 213, 219, 226, 234, 243, 253, 264, 264, 265, 267, 270, 274, 279, 285, 292, 300
Offset: 0

Views

Author

Hieronymus Fischer, May 31 2007

Keywords

Comments

Let A be the Hessenberg n X n matrix defined by: A[1,j] = j mod 12, A[i,i]:=1, A[i,i-1]=-1. Then, for n >= 1, a(n)=det(A). - Milan Janjic, Jan 24 2010

Crossrefs

Programs

  • GAP
    List([0..60], n-> Sum([0..n], k-> k mod 12 )); # G. C. Greubel, Sep 01 2019
  • Magma
    [&+[(k mod 12): k in [0..n]]: n in [0..60]]; // G. C. Greubel, Sep 01 2019
    
  • Maple
    seq(coeff(series(x*(1-12*x^11+11*x^12)/((1-x^12)*(1-x)^3), x, n+1), x, n), n = 0..60); # G. C. Greubel, Sep 01 2019
  • Mathematica
    Sum[Mod[k, 12], {k, 0, Range[0, 60]}] (* G. C. Greubel, Sep 01 2019 *)
    LinearRecurrence[{1,0,0,0,0,0,0,0,0,0,0,1,-1},{0,1,3,6,10,15,21,28,36,45,55,66,66},60] (* Harvey P. Dale, Jan 16 2024 *)
  • PARI
    a(n) = sum(k=0, n, k % 12); \\ Michel Marcus, Apr 29 2018
    
  • Sage
    [sum(k%12 for k in (0..n)) for n in (0..60)] # G. C. Greubel, Sep 01 2019
    

Formula

a(n) = 66*floor(n/12) + A010881(n)*(A010881(n) + 1)/2.
G.f.: (Sum_{k=1..11} k*x^k)/((1-x^12)*(1-x)).
G.f.: x*(1 - 12*x^11 + 11*x^12)/((1-x^12)*(1-x)^3).

A001840 Expansion of g.f. x/((1 - x)^2*(1 - x^3)).

Original entry on oeis.org

0, 1, 2, 3, 5, 7, 9, 12, 15, 18, 22, 26, 30, 35, 40, 45, 51, 57, 63, 70, 77, 84, 92, 100, 108, 117, 126, 135, 145, 155, 165, 176, 187, 198, 210, 222, 234, 247, 260, 273, 287, 301, 315, 330, 345, 360, 376, 392, 408, 425, 442, 459, 477, 495, 513, 532, 551, 570, 590
Offset: 0

Views

Author

Keywords

Comments

a(n-3) is the number of aperiodic necklaces (Lyndon words) with 3 black beads and n-3 white beads.
Number of triangular partitions (see Almkvist).
Consists of arithmetic progression quadruples of common difference n+1 starting at A045943(n). Refers to the least number of coins needed to be rearranged in order to invert the pattern of a (n+1)-rowed triangular array. For instance, a 5-rowed triangular array requires a minimum of a(4)=5 rearrangements (shown bracketed here) for it to be turned upside down.
.....{*}..................{*}*.*{*}{*}
.....*.*....................*.*.*.{*}
....*.*.*....---------\......*.*.*
..{*}*.*.*...---------/.......*.*
{*}{*}*.*{*}..................{*}
- Lekraj Beedassy, Oct 13 2003
Partial sums of 1,1,1,2,2,2,3,3,3,4,4,4,... - Jon Perry, Mar 01 2004
Sum of three successive terms is a triangular number in natural order starting with 3: a(n)+a(n+1)+a(n+2) = T(n+2) = (n+2)*(n+3)/2. - Amarnath Murthy, Apr 25 2004
Apply Riordan array (1/(1-x^3),x) to n. - Paul Barry, Apr 16 2005
Absolute values of numbers that appear in A145919. - Matthew Vandermast, Oct 28 2008
In the Moree definition, (-1)^n*a(n) is the 3rd Witt transform of A033999 and (-1)^n*A004524(n) with 2 leading zeros dropped is the 2nd Witt transform of A033999. - R. J. Mathar, Nov 08 2008
Column sums of:
1 2 3 4 5 6 7 8 9.....
1 2 3 4 5 6.....
1 2 3.....
........................
----------------------
1 2 3 5 7 9 12 15 18 - Jon Perry, Nov 16 2010
a(n) is the sum of the positive integers <= n that have the same residue modulo 3 as n. They are the additive counterpart of the triple factorial numbers. - Peter Luschny, Jul 06 2011
a(n+1) is the number of 3-tuples (w,x,y) with all terms in {0,...,n} and w=3*x+y. - Clark Kimberling, Jun 04 2012
a(n+1) is the number of pairs (x,y) with x and y in {0,...,n}, x-y = (1 mod 3), and x+y < n. - Clark Kimberling, Jul 02 2012
a(n+1) is the number of partitions of n into two sorts of part(s) 1 and one sort of (part) 3. - Joerg Arndt, Jun 10 2013
Arrange A004523 in rows successively shifted to the right two spaces and sum the columns:
1 2 2 3 4 4 5 6 6...
1 2 2 3 4 4 5...
1 2 2 3 4...
1 2 2...
1...
------------------------------
1 2 3 5 7 9 12 15 18... - L. Edson Jeffery, Jul 30 2014
a(n) = A258708(n+1,1) for n > 0. - Reinhard Zumkeller, Jun 23 2015
Also the number of triples of positive integers summing to n + 4, the first less than each of the other two. Also the number of triples of positive integers summing to n + 2, the first less than or equal to each of the other two. - Gus Wiseman, Oct 11 2020
Also the lower matching number of the (n+1)-triangular honeycomb king graph = n-triangular grid graph (West convention). - Eric W. Weisstein, Dec 14 2024

Examples

			G.f. = x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 9*x^6 + 12*x^7 + 15*x^8 + 18*x^9 + ...
1+2+3=6=t(3), 2+3+5=t(4), 5+7+9=t(5).
[n] a(n)
--------
[1] 1
[2] 2
[3] 3
[4] 1 + 4
[5] 2 + 5
[6] 3 + 6
[7] 1 + 4 + 7
[8] 2 + 5 + 8
[9] 3 + 6 + 9
a(7) = floor(2/3) +floor(3/3) +floor(4/3) +floor(5/3) +floor(6/3) +floor(7/3) +floor(8/3) +floor(9/3) = 12. - _Bruno Berselli_, Aug 29 2013
		

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 73, problem 25.
  • Ulrich Faigle, Review of Gerhard Post and G.J. Woeginger, Sports tournaments, home-away assignments and the break minimization problem, MR2224983(2007b:90134), 2007.
  • Hansraj Gupta, Partitions of j-partite numbers into twelve or a smaller number of parts. Collection of articles dedicated to Professor P. L. Bhatnagar on his sixtieth birthday. Math. Student 40 (1972), 401-441 (1974).
  • Richard K. Guy, A problem of Zarankiewicz, in P. Erdős and G. Katona, editors, Theory of Graphs (Proceedings of the Colloquium, Tihany, Hungary), Academic Press, NY, 1968, pp. 119-150, (p. 126, divided by 2).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Ordered union of triangular matchstick numbers A045943 and generalized pentagonal numbers A001318.
Cf. A058937.
A column of triangle A011847.
Cf. A258708.
A001399 counts 3-part partitions, ranked by A014612.
A337483 counts either weakly increasing or weakly decreasing triples.
A337484 counts neither strictly increasing nor strictly decreasing triples.
A014311 ranks 3-part compositions, with strict case A337453.

Programs

  • Haskell
    a001840 n = a001840_list !! n
    a001840_list = scanl (+) 0 a008620_list
    -- Reinhard Zumkeller, Apr 16 2012
  • Magma
    [ n le 2 select n else n*(n+1)/2-Self(n-1)-Self(n-2): n in [1..58] ];  // Klaus Brockhaus, Oct 01 2009
    
  • Maple
    A001840 := n->floor((n+1)*(n+2)/6);
    A001840:=-1/((z**2+z+1)*(z-1)**3); # conjectured (correctly) by Simon Plouffe in his 1992 dissertation
    seq(floor(binomial(n-1,2)/3), n=3..61); # Zerinvary Lajos, Jan 12 2009
    A001840 :=  n -> add(k, k = select(k -> k mod 3 = n mod 3, [$1 .. n])): seq(A001840(n), n = 0 .. 58); # Peter Luschny, Jul 06 2011
  • Mathematica
    a[0]=0; a[1]=1; a[n_]:= a[n]= n(n+1)/2 -a[n-1] -a[n-2]; Table[a[n], {n,0,100}]
    f[n_] := Floor[(n + 1)(n + 2)/6]; Array[f, 59, 0] (* Or *)
    CoefficientList[ Series[ x/((1 + x + x^2)*(1 - x)^3), {x, 0, 58}], x] (* Robert G. Wilson v *)
    a[ n_] := With[{m = If[ n < 0, -3 - n, n]}, SeriesCoefficient[ x /((1 - x^3) (1 - x)^2), {x, 0, m}]]; (* Michael Somos, Jul 11 2011 *)
    LinearRecurrence[{2,-1,1,-2,1},{0,1,2,3,5},60] (* Harvey P. Dale, Jul 25 2011 *)
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n+4,{3}],#[[1]]<#[[2]]&&#[[1]]<#[[3]]&]],{n,0,15}] (* Gus Wiseman, Oct 05 2020 *)
  • PARI
    {a(n) = (n+1) * (n+2) \ 6}; /* Michael Somos, Feb 11 2004 */
    
  • Sage
    [binomial(n, 2) // 3 for n in range(2, 61)] # Zerinvary Lajos, Dec 01 2009
    

Formula

a(n) = (A000217(n+1) - A022003(n-1))/3;
a(n) = (A016754(n+1) - A010881(A016754(n+1)))/24;
a(n) = (A033996(n+1) - A010881(A033996(n+1)))/24.
Euler transform of length 3 sequence [2, 0, 1].
a(3*k-1) = k*(3*k + 1)/2;
a(3*k) = 3*k*(k + 1)/2;
a(3*k+1) = (k + 1)*(3*k + 2)/2.
a(n) = floor( (n+1)*(n+2)/6 ) = floor( A000217(n+1)/3 ).
a(n+1) = a(n) + A008620(n) = A002264(n+3). - Reinhard Zumkeller, Aug 01 2002
From Michael Somos, Feb 11 2004: (Start)
G.f.: x / ((1-x)^2 * (1-x^3)).
a(n) = 1 + a(n-1) + a(n-3) - a(n-4).
a(-3-n) = a(n). (End)
a(n) = a(n-3) + n for n > 2; a(0)=0, a(1)=1, a(2)=2. - Paul Barry, Jul 14 2004
a(n) = binomial(n+3, 3)/(n+3) + cos(2*Pi*(n-1)/3)/9 + sqrt(3)sin(2*Pi*(n-1)/3)/9 - 1/9. - Paul Barry, Jan 01 2005
From Paul Barry, Apr 16 2005: (Start)
a(n) = Sum_{k=0..n} k*(cos(2*Pi*(n-k)/3 + Pi/3)/3 + sqrt(3)*sin(2*Pi*(n-k)/3 + Pi/3)/3 + 1/3).
a(n) = Sum_{k=0..floor(n/3)} n-3*k. (End)
For n > 1, a(n) = A000217(n) - a(n-1) - a(n-2); a(0)=0, a(1)=1.
G.f.: x/(1 + x + x^2)/(1 - x)^3. - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009
a(n) = (4 + 3*n^2 + 9*n)/18 + ((n mod 3) - ((n-1) mod 3))/9. - Klaus Brockhaus, Oct 01 2009
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5), with n>4, a(0)=0, a(1)=1, a(2)=2, a(3)=3, a(4)=5. - Harvey P. Dale, Jul 25 2011
a(n) = A214734(n + 2, 1, 3). - Renzo Benedetti, Aug 27 2012
G.f.: x*G(0), where G(k) = 1 + x*(3*k+4)/(3*k + 2 - 3*x*(k+2)*(3*k+2)/(3*(1+x)*k + 6*x + 4 - x*(3*k+4)*(3*k+5)/(x*(3*k+5) + 3*(k+1)/G(k+1)))); (continued fraction). - Sergei N. Gladkovskii, Jun 10 2013
Empirical: a(n) = floor((n+3)/(e^(6/(n+3))-1)). - Richard R. Forberg, Jul 24 2013
a(n) = Sum_{i=0..n} floor((i+2)/3). - Bruno Berselli, Aug 29 2013
0 = a(n)*(a(n+2) + a(n+3)) + a(n+1)*(-2*a(n+2) - a(n+3) + a(n+4)) + a(n+2)*(a(n+2) - 2*a(n+3) + a(n+4)) for all n in Z. - Michael Somos, Jan 22 2014
a(n) = n/2 + floor(n^2/3 + 2/3)/2. - Bruno Berselli, Jan 23 2017
a(n) + a(n+1) = A000212(n+2). - R. J. Mathar, Jan 14 2021
Sum_{n>=1} 1/a(n) = 20/3 - 2*Pi/sqrt(3). - Amiram Eldar, Sep 27 2022
E.g.f.: (exp(x)*(4 + 12*x + 3*x^2) - 4*exp(-x/2)*cos(sqrt(3)*x/2))/18. - Stefano Spezia, Apr 05 2023

A089911 a(n) = Fibonacci(n) mod 12.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 1, 9, 10, 7, 5, 0, 5, 5, 10, 3, 1, 4, 5, 9, 2, 11, 1, 0, 1, 1, 2, 3, 5, 8, 1, 9, 10, 7, 5, 0, 5, 5, 10, 3, 1, 4, 5, 9, 2, 11, 1, 0, 1, 1, 2, 3, 5, 8, 1, 9, 10, 7, 5, 0, 5, 5, 10, 3, 1, 4, 5, 9, 2, 11, 1, 0, 1, 1, 2, 3, 5, 8, 1, 9, 10, 7, 5, 0, 5, 5, 10, 3, 1, 4, 5, 9, 2, 11, 1, 0, 1, 1
Offset: 0

Views

Author

Casey Mongoven, Nov 14 2003

Keywords

Comments

From Reinhard Zumkeller, Jul 05 2013: (Start)
Sequence has been applied by several composers to 12-tone equal temperament pitch structure. The complete Fibonacci mod 12 system (a set of 10 periodic sequences) exhausts all possible ordered dyads; that is, every possible combination of two pitches is found in these sets.
a(A008594(n)) = 0;
a(A227144(n)) = 1;
a(3*A047522(n)) = 2;
a(A017569(n)) = a(2*A016933(n)) = a(4*A016777(n)) = 3;
a(2*A017629(n)) = a(3*A017137(n)) = a(6*A004767(n)) = 4;
a(A227146(n)) = 5;
a(nonexistent) = 6;
a(2*A017581(n)) = 7;
a(2*A017557(n)) = a(4*A016813(n)) = 8;
a(A017617(n)) = a(2*A016957(n)) = a(4*A016789(n)) = 9;
a(3*A047621(n)) = 10;
a(2*A017653(n)) = 11. (End)

Crossrefs

Programs

  • Haskell
    a089911 n = a089911_list !! n
    a089911_list = 0 : 1 : zipWith (\u v -> (u + v) `mod` 12)
                           (tail a089911_list) a089911_list
    -- Reinhard Zumkeller, Jul 01 2013
    
  • Magma
    [Fibonacci(n) mod 12: n in [0..100]]; // Vincenzo Librandi, Feb 04 2014
  • Maple
    with(combinat,fibonacci); A089911 := proc(n) fibonacci(n) mod 12; end;
  • Mathematica
    Table[Mod[Fibonacci[n], 12], {n, 0, 100}] (* Vincenzo Librandi, Feb 04 2014 *)
  • PARI
    a(n)=fibonacci(n)%12 \\ Charles R Greathouse IV, Feb 03 2014
    

Formula

Has period of 24, restricted period 12 and multiplier 5.
a(n) = (a(n-1) + a(n-2)) mod 12, a(0) = 0, a(1) = 1.

Extensions

More terms from Ray Chandler, Nov 15 2003

A168185 Characteristic function of numbers that are not multiples of 12.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 30 2009

Keywords

Comments

a(n+12) = a(n);
a(n) = A000007(A010881(n));
a(A168186(n)) = 1; a(A008594(n)) = 0;
A033444(n) = Sum_{k=0..n} a(k)*(n-k).

Crossrefs

Programs

Formula

For the general case: the characteristic function of numbers that are not multiples of m is a(n) = floor((n-1)/m) - floor(n/m) + 1, m,n > 0. - Boris Putievskiy, May 08 2013

A007879 Chimes made by clock striking the hour and half-hour.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 9, 1, 10, 1, 11, 1, 12, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 9, 1, 10, 1, 11, 1, 12, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 9, 1, 10, 1, 11, 1, 12
Offset: 0

Views

Author

Jan Wolitzky

Keywords

Comments

Periodic sequence with period 24. - Michel Marcus, Jul 17 2013

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1+x-x^2-x^24-13x^25+x^26+12x^27)/((1-x^24)(1-x^2)^2),{x,0,71}],x] (* Stefano Spezia, Mar 27 2022 *)
  • PARI
    a(n)= 1 + ((n-1)*(1-(-1)^n)/4) % 12 \\ Michel Marcus, Jul 17 2013

Formula

From Hieronymus Fischer, Sep 25 2007: (Start)
G.f.: 1/(1-x^2)+x(12x^26-13x^24+1)/((1-x^24)(1-x^2)^2).
G.f.: (1+x-x^2-x^24-13x^25+x^26+12x^27)/((1-x^24)(1-x^2)^2).
a(n) = 1 + ((n-1)*(1-(-1)^n)/4) mod 12.
a(n) = 1 + ((n-1)*(n mod 2)/2) mod 12. (End)

A034326 Hours struck by a clock.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9
Offset: 1

Views

Author

Tae Su Chung (cts32(AT)hanmail.net)

Keywords

Comments

Period 12: repeat [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12].

Crossrefs

Cf. A010881 (n mod 12).

Programs

Formula

From Wesley Ivan Hurt, Sep 23 2014: (Start)
a(n) = (n-1) mod 12 + 1.
a(n) = a(n-12), n > 12.
G.f.: 11 + 1/(1-x) + x * (x + 2*x^2 + 3*x^3 + 4*x^4 + 5*x^5 + 6*x^6 + 7*x^7 + 8*x^8 + 9*x^9 + 10*x^10 + 11*x^11) / (1-x^12). (End)
From M. F. Hasler, Sep 25 2014: (Start)
a(n) = A010881(n-1) + 1.
G.f.: Sum_{k=1..12} k*x^k/(1-x^12). (End)
a(n) = n - 12*floor((n-1)/12). - Mikael Aaltonen, Jan 03 2014

A358850 Primorial base exp-function reduced modulo 12.

Original entry on oeis.org

1, 2, 3, 6, 9, 6, 5, 10, 3, 6, 9, 6, 1, 2, 3, 6, 9, 6, 5, 10, 3, 6, 9, 6, 1, 2, 3, 6, 9, 6, 7, 2, 9, 6, 3, 6, 11, 10, 9, 6, 3, 6, 7, 2, 9, 6, 3, 6, 11, 10, 9, 6, 3, 6, 7, 2, 9, 6, 3, 6, 1, 2, 3, 6, 9, 6, 5, 10, 3, 6, 9, 6, 1, 2, 3, 6, 9, 6, 5, 10, 3, 6, 9, 6, 1, 2, 3, 6, 9, 6, 7, 2, 9, 6, 3, 6, 11, 10
Offset: 0

Views

Author

Antti Karttunen, Dec 03 2022

Keywords

Crossrefs

Programs

  • PARI
    A358850(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m%12); };

Formula

a(n) = A010881(A276086(n)) = A276086(n) mod 12.

A080063 a(n) = n mod (spf(n)+1), where spf(n) is the smallest prime dividing n (A020639).

Original entry on oeis.org

1, 2, 3, 1, 5, 0, 7, 2, 1, 1, 11, 0, 13, 2, 3, 1, 17, 0, 19, 2, 1, 1, 23, 0, 1, 2, 3, 1, 29, 0, 31, 2, 1, 1, 5, 0, 37, 2, 3, 1, 41, 0, 43, 2, 1, 1, 47, 0, 1, 2, 3, 1, 53, 0, 1, 2, 1, 1, 59, 0, 61, 2, 3, 1, 5, 0, 67, 2, 1, 1, 71, 0, 73, 2, 3, 1, 5, 0, 79, 2, 1, 1, 83, 0, 1, 2, 3, 1, 89, 0, 3, 2, 1, 1, 5, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 24 2003

Keywords

Comments

a(n) = 0 iff n mod 6 = 0 (A008588);
a(n) = 2 iff n mod 6 = 2 (A016933);
for n>1: a(n)=n iff n is prime (A000040, A008578).

Crossrefs

A115523 Number of ordered quadruples (i,j,k,l) in range [0..n] satisfying i == j (mod 2), j == k (mod 3) and k == l (mod 4).

Original entry on oeis.org

1, 2, 5, 12, 33, 60, 111, 176, 287, 440, 637, 864, 1237, 1652, 2147, 2752, 3555, 4428, 5517, 6700, 8177, 9878, 11785, 13824, 16441, 19214, 22265, 25676, 29685, 33900, 38715, 43776, 49595, 55964, 62821, 69984, 78445, 87248, 96647, 106800, 118167, 129948, 142905, 156332
Offset: 0

Views

Author

Keywords

Comments

Quasipolynomial of order 12. - Charles R Greathouse IV, Dec 03 2014

Crossrefs

Programs

  • PARI
    a(n)=my(s);for(i=0,n,forstep(j=i%2,n,2,forstep(k=j%3,n,3,s+=(n-(k%4))\4+1)));s \\ naive; Charles R Greathouse IV, Dec 03 2014

Formula

a(n) = binomial(n+1,4) - presumably quadratic (PORC) correction term which depends on n mod 24.
From Charles R Greathouse IV, Dec 03 2014: (Start)
n == 0 (mod 12): a(n) = (n^4 + 4*n^3 + 12*n^2 + 24*n + 24)/24
n == 1 (mod 12): a(n) = (n^4 + 4*n^3 + 12*n^2 + 20*n + 11)/24
n == 2 (mod 12): a(n) = (n^4 + 4*n^3 + 10*n^2 + 12*n + 8)/24
n == 3 (mod 12): a(n) = (n^4 + 4*n^3 + 8*n^2 + 8*n + 3)/24
n == 4 (mod 12): a(n) = (n^4 + 4*n^3 + 12*n^2 + 20*n + 8)/24
n == 5 (mod 12): a(n) = (n^4 + 4*n^3 + 10*n^2 + 12*n + 5)/24
n == 6 (mod 12): a(n) = (n^4 + 4*n^3 + 12*n^2 + 12*n )/24
n == 7 (mod 12): a(n) = (n^4 + 4*n^3 + 8*n^2 + 8*n + 3)/24
n == 8 (mod 12): a(n) = (n^4 + 4*n^3 + 10*n^2 + 12*n + 8)/24
n == 9 (mod 12): a(n) = (n^4 + 4*n^3 + 12*n^2 + 12*n + 3)/24
n == 10 (mod 12): a(n) = (n^4 + 4*n^3 + 12*n^2 + 8*n + 8)/24
n == 11 (mod 12): a(n) = (n^4 + 4*n^3 + 6*n^2 + 4*n + 1)/24
(End)
a(n) = (19958400*(n^4+4*n^3+12*n^2+24*n+24) - (1235*n^2+2*1127*n+215)*m^11 +(74987*n^2+2*69047*n+13541)*m^10 -(1983300*n^2+2*1844700*n+377520)*m^9 +(29983800*n^2+2*28201800*n+6115890)*m^8 - (285731655*n^2+2*272034411*n+63415275)*m^7 +(1784142591*n^2+2*1720539051*n+436295013)*m^6 -(7344548530*n^2+2*7175131810*n+1995595030)*m^5 +(19515989350*n^2+2*19301456350*n+5911801060)*m^4 -(31672473360*n^2+2*31658103312*n+10685562360)*m^3 +(27907182072*n^2+2*28127231352*n+10490664096)*m^2 -(9932634720*n^2+2*10110299040*n+4359398400)*m)/479001600 where m=n-12*floor(n/12). - Luce ETIENNE, Sep 27 2017

A260031 Final nonzero digit of n^n in base 12.

Original entry on oeis.org

1, 4, 3, 4, 5, 3, 7, 4, 9, 4, 11, 1, 1, 4, 3, 4, 5, 3, 7, 4, 9, 4, 11, 4, 1, 4, 3, 4, 5, 3, 7, 4, 9, 4, 11, 9, 1, 4, 3, 4, 5, 3, 7, 4, 9, 4, 11, 4, 1, 4, 3, 4, 5, 3, 7, 4, 9, 4, 11, 1, 1, 4, 3, 4, 5, 3, 7, 4, 9, 4, 11, 9, 1, 4, 3, 4, 5, 3, 7, 4, 9, 4, 11, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jul 19 2015

Keywords

Crossrefs

Programs

  • Haskell
    import Math.NumberTheory.Moduli (powerMod)
    a260031 n = if x > 0 then x else f $ div (n ^ n) 12
              where x = powerMod n n 12
                    f z = if m == 0 then f z' else m
                          where (z', m) = divMod z 12
    -- Reinhard Zumkeller, Jul 19 2015
  • Python
    from gmpy2 import mpz, digits
    def A260031(n):
        s = digits(mpz(n)**mpz(n),12)
        t = s[-1]
        while t == '0':
            s = s[:-1]
            t = s[-1]
        return int(t,12) # Chai Wah Wu, Jul 19 2015
    

Extensions

More terms from Chai Wah Wu, Jul 19 2015
Showing 1-10 of 11 results. Next