cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A130489 a(n) = Sum_{k=0..n} (k mod 11) (Partial sums of A010880).

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 55, 56, 58, 61, 65, 70, 76, 83, 91, 100, 110, 110, 111, 113, 116, 120, 125, 131, 138, 146, 155, 165, 165, 166, 168, 171, 175, 180, 186, 193, 201, 210, 220, 220, 221, 223, 226, 230, 235, 241, 248, 256, 265, 275, 275, 276
Offset: 0

Views

Author

Hieronymus Fischer, May 31 2007

Keywords

Comments

Let A be the Hessenberg n X n matrix defined by A[1,j] = j mod 11, A[i,i]:=1, A[i,i-1]=-1. Then, for n >= 1, a(n)=det(A). - Milan Janjic, Jan 24 2010

Crossrefs

Programs

  • GAP
    a:=[0,1,3,6,10,15,21,28,36,45, 55,55];; for n in [13..61] do a[n]:=a[n-1]+a[n-11]-a[n-12]; od; a; # G. C. Greubel, Aug 31 2019
  • Magma
    I:=[0,1,3,6,10,15,21,28,36,45,55,55]; [n le 12 select I[n] else Self(n-1) + Self(n-11) - Self(n-12): n in [1..61]]; // G. C. Greubel, Aug 31 2019
    
  • Maple
    seq(coeff(series(x*(1-11*x^10+10*x^11)/((1-x^11)*(1-x)^3), x, n+1), x, n), n = 0 .. 60); # G. C. Greubel, Aug 31 2019
  • Mathematica
    LinearRecurrence[{1,0,0,0,0,0,0,0,0,0,1,-1}, {0,1,3,6,10,15,21,28,36,45, 55,55}, 60] (* G. C. Greubel, Aug 31 2019 *)
    Accumulate[PadRight[{},80,Range[0,10]]] (* Harvey P. Dale, Jul 21 2021 *)
  • PARI
    a(n) = sum(k=0, n, k % 11); \\ Michel Marcus, Apr 28 2018
    
  • Sage
    def A130489_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(x*(1-11*x^10+10*x^11)/((1-x^11)*(1-x)^3)).list()
    A130489_list(60) # G. C. Greubel, Aug 31 2019
    

Formula

a(n) = 55*floor(n/11) + A010880(n)*(A010880(n) + 1)/2.
G.f.: (Sum_{k=1..10} k*x^k)/((1-x^11)*(1-x)).
G.f.: x*(1 - 11*x^10 + 10*x^11)/((1-x^11)*(1-x)^3).

A145568 Characteristic function of numbers relatively prime to 11.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Wolfdieter Lang Feb 05 2009

Keywords

Comments

The x-powers appearing in the numerator polynomial of the o.g.f., given below, give the numbers from 0,1,...,10 which survive the sieve of Eratosthenes for multiples of 11, namely 1,2,...10.
Contribution from Reinhard Zumkeller, Nov 30 2009: (Start)
a(n)=A000007(A010880(n)); a(A160542(n))=1; a(A008593(n))=0;
A033443(n) = SUM(a(k)*(n-k): 0<=k<=n). (End)

Crossrefs

A000035, A011655, A011558, A109720 for coprimality with 2,3,5,7, respectively.

Programs

  • Mathematica
    LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1},{0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},105] (* Ray Chandler, Aug 26 2015 *)
  • PARI
    a(n)=gcd(n,11)==1 \\ Charles R Greathouse IV, Jun 28 2015

Formula

a(n)=1 if gcd(n,11)=1, else 0. Periodic with period 11: a(n+11)=a(11).
O.g.f.: x*sum(x^k,k=0..9)/(1-x^11).
Completely multiplicative with a(p) = (if p=11 then 0 else 1), p prime. [From Reinhard Zumkeller, Nov 30 2009]
Dirichlet g.f. (1-11^(-s))*zeta(s). - R. J. Mathar, Mar 06 2011
For the general case: the characteristic function of numbers that are not multiples of m is a(n)=floor((n-1)/m)-floor(n/m)+1, m,n > 0. - Boris Putievskiy, May 08 2013

A247391 Base-n state complexity of partitioned deterministic finite automaton (PDFA) for the periodic sequence (1234567891011).

Original entry on oeis.org

110, 55, 55, 55, 110, 110, 110, 55, 22, 12, 11, 110, 55, 55, 55, 110, 110, 110, 55, 22, 12, 11, 110, 55, 55, 55, 110, 110, 110, 55, 22, 12, 11, 110, 55, 55, 55, 110, 110, 110, 55, 22, 12, 11, 110, 55, 55, 55, 110, 110, 110, 55, 22, 12, 11, 110, 55, 55, 55
Offset: 2

Views

Author

Vincenzo Librandi, Sep 17 2014

Keywords

Crossrefs

Programs

  • Magma
    &cat[[110,55,55,55,110,110,110,55,22,12,11]: n in [0..10]];
  • Mathematica
    CoefficientList[Series[(110 + 55 x + 55 x^2 + 55 x^3 + 110 x^4 + 110 x^5 + 110 x^6 + 55 x^7 + 22 x^8 + 12 x^9 + 11 x^10)/(1-x^11), {x, 0, 60}], x]

Formula

G.f.: x^2*(110 + 55*x + 55*x^2 + 55*x^3 + 110*x^4 + 110*x^5 + 110*x^6 + 55*x^7 + 22*x^8 + 12*x^9 + 11*x^10)/(1-x^11).
a(n) = (1283*m^10 - 64570*m^9 + 1396065*m^8 - 16960020*m^7 + 127065939*m^6 - 605936100*m^5 + 1828078285*m^4 - 3335483030*m^3 + 3289569228*m^2 - 1288120680*m + 5443200)/453600 where m = (n mod 11). - Luce ETIENNE, Nov 04 2018

A070434 a(n) = n^2 mod 11.

Original entry on oeis.org

0, 1, 4, 9, 5, 3, 3, 5, 9, 4, 1, 0, 1, 4, 9, 5, 3, 3, 5, 9, 4, 1, 0, 1, 4, 9, 5, 3, 3, 5, 9, 4, 1, 0, 1, 4, 9, 5, 3, 3, 5, 9, 4, 1, 0, 1, 4, 9, 5, 3, 3, 5, 9, 4, 1, 0, 1, 4, 9, 5, 3, 3, 5, 9, 4, 1, 0, 1, 4, 9, 5, 3, 3, 5, 9, 4, 1, 0, 1, 4, 9, 5, 3, 3, 5, 9, 4, 1, 0, 1, 4, 9, 5, 3, 3, 5, 9, 4, 1, 0, 1
Offset: 0

Views

Author

N. J. A. Sloane, May 12 2002

Keywords

Crossrefs

Programs

Formula

From R. J. Mathar, Apr 20 2010: (Start)
a(n) = a(n-11).
G.f.: ( -x*(1+x)*(x^8+3*x^7+6*x^6-x^5+4*x^4-x^3+6*x^2+3*x+1) ) / ( (x-1)*(1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^10) ). (End)
a(n) = A010880(n^2). - Michel Marcus, Mar 24 2016

A112651 Numbers k such that k^2 == k (mod 11).

Original entry on oeis.org

0, 1, 11, 12, 22, 23, 33, 34, 44, 45, 55, 56, 66, 67, 77, 78, 88, 89, 99, 100, 110, 111, 121, 122, 132, 133, 143, 144, 154, 155, 165, 166, 176, 177, 187, 188, 198, 199, 209, 210, 220, 221, 231, 232, 242, 243, 253, 254, 264, 265, 275, 276, 286, 287, 297, 298
Offset: 1

Views

Author

Jeremy Gardiner, Dec 28 2005

Keywords

Comments

Numbers that are congruent to {0,1} (mod 11). - Philippe Deléham, Oct 17 2011

Examples

			12 is a term because 12*12 = 144 == 1 (mod 11) and 12 == 1 (mod 11).
		

Crossrefs

Cf. A010880 (n mod 11), A070434 (n^2 mod 11).

Programs

  • Maple
    m = 11 for n = 1 to 300 if n^2 mod m = n mod m then print n; next n
  • Mathematica
    Select[Range[0,300],PowerMod[#,2,11]==Mod[#,11]&] (* or *) LinearRecurrence[ {1,1,-1},{0,1,11},60] (* Harvey P. Dale, Apr 19 2015 *)
  • PARI
    a(n)=11*n/2-31/4-9*(-1)^n/4 \\ Charles R Greathouse IV, Oct 16 2015

Formula

a(n) = 11*n - a(n-1) - 21 (with a(1)=0). - Vincenzo Librandi, Nov 13 2010
From R. J. Mathar, Oct 08 2011: (Start)
a(n) = 11*n/2 - 31/4 - 9*(-1)^n/4.
G.f.: x^2*(1+10*x) / ( (1+x)*(x-1)^2 ). (End)
a(n+1) = Sum_{k>=0} A030308(n,k)*A005015(k-1) with A005015(-1)=1. - Philippe Deléham, Oct 17 2011

Extensions

Edited by N. J. A. Sloane, Aug 19 2010
Definition clarified by Harvey P. Dale, Apr 19 2015

A130490 a(n) = Sum_{k=0..n} (k mod 12) (Partial sums of A010881).

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 66, 67, 69, 72, 76, 81, 87, 94, 102, 111, 121, 132, 132, 133, 135, 138, 142, 147, 153, 160, 168, 177, 187, 198, 198, 199, 201, 204, 208, 213, 219, 226, 234, 243, 253, 264, 264, 265, 267, 270, 274, 279, 285, 292, 300
Offset: 0

Views

Author

Hieronymus Fischer, May 31 2007

Keywords

Comments

Let A be the Hessenberg n X n matrix defined by: A[1,j] = j mod 12, A[i,i]:=1, A[i,i-1]=-1. Then, for n >= 1, a(n)=det(A). - Milan Janjic, Jan 24 2010

Crossrefs

Programs

  • GAP
    List([0..60], n-> Sum([0..n], k-> k mod 12 )); # G. C. Greubel, Sep 01 2019
  • Magma
    [&+[(k mod 12): k in [0..n]]: n in [0..60]]; // G. C. Greubel, Sep 01 2019
    
  • Maple
    seq(coeff(series(x*(1-12*x^11+11*x^12)/((1-x^12)*(1-x)^3), x, n+1), x, n), n = 0..60); # G. C. Greubel, Sep 01 2019
  • Mathematica
    Sum[Mod[k, 12], {k, 0, Range[0, 60]}] (* G. C. Greubel, Sep 01 2019 *)
    LinearRecurrence[{1,0,0,0,0,0,0,0,0,0,0,1,-1},{0,1,3,6,10,15,21,28,36,45,55,66,66},60] (* Harvey P. Dale, Jan 16 2024 *)
  • PARI
    a(n) = sum(k=0, n, k % 12); \\ Michel Marcus, Apr 29 2018
    
  • Sage
    [sum(k%12 for k in (0..n)) for n in (0..60)] # G. C. Greubel, Sep 01 2019
    

Formula

a(n) = 66*floor(n/12) + A010881(n)*(A010881(n) + 1)/2.
G.f.: (Sum_{k=1..11} k*x^k)/((1-x^12)*(1-x)).
G.f.: x*(1 - 12*x^11 + 11*x^12)/((1-x^12)*(1-x)^3).

A014020 Inverse of 11th cyclotomic polynomial.

Original entry on oeis.org

1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Periodic with period 11. - Ray Chandler, Apr 03 2017

Crossrefs

Cf. A010880.

Programs

  • Magma
    &cat[[1,-1,0,0,0,0,0,0,0,0,0]: n in [0..15]]; // Vincenzo Librandi, Apr 03 2014
  • Maple
    with(numtheory,cyclotomic); c := n->series(1/cyclotomic(n,x),x,80);
  • Mathematica
    CoefficientList[Series[1/Cyclotomic[11, x], {x, 0, 100}], x] (* Vincenzo Librandi, Apr 03 2014 *)
    LinearRecurrence[{-1, -1, -1, -1, -1, -1, -1, -1, -1, -1},{1, -1, 0, 0, 0, 0, 0, 0, 0, 0},81] (* Ray Chandler, Sep 15 2015 *)
  • PARI
    Vec(1/polcyclo(11)+O(x^99)) \\ Charles R Greathouse IV, Mar 24 2014
    

Formula

G.f.: 1/(1 + x + x^2 + x^3 + ... + x^10). - R. J. Mathar, Aug 11 2012
a(n) = (11*m^10 - 595*m^9 + 13980*m^8 - 186990*m^7 + 1566663*m^6 - 8513715*m^5 + 29974570*m^4 - 65946860*m^3 + 82751976*m^2 - 46916640*m + 3628800)/3628800, where m = n mod 11. - Luce ETIENNE, Sep 20 2018

A014031 Inverse of 22nd cyclotomic polynomial.

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Periodic with period length 22. - Ray Chandler, Apr 03 2017

Crossrefs

Cf. A010880.

Programs

  • Magma
    &cat[[1,1,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0, 0,0,0]: n in [0..6]]; // Vincenzo Librandi, Apr 03 2014
  • Maple
    with(numtheory,cyclotomic); c := n->series(1/cyclotomic(n,x),x,80);
  • Mathematica
    CoefficientList[Series[1/Cyclotomic[22, x], {x, 0, 100}], x] (* Vincenzo Librandi, Apr 03 2014 *)
    LinearRecurrence[{1, -1, 1, -1, 1, -1, 1, -1, 1, -1},{1, 1, 0, 0, 0, 0, 0, 0, 0, 0},81] (* Ray Chandler, Sep 15 2015 *)
  • PARI
    Vec(1/polcyclo(22)+O(x^99)) \\ Charles R Greathouse IV, Mar 24 2014
    

Formula

G.f.: 1/(1 - x + x^2 - x^3 + ... - x^9 + x^10). - R. J. Mathar, Aug 11 2012
From Luce ETIENNE, Nov 04 2018: (Start)
a(n) = a(n-22).
a(n) = (-9*m^10 + 485*m^9 - 11340*m^8 + 150690*m^7 - 1251117*m^6 + 6709605*m^5 - 23140710*m^4 + 49127860*m^3 - 57244824*m^2 + 25659360*m + 3628800)*(-1)^floor(n/11)/3628800 where m = (n mod 11). (End)

A014042 Inverse of 33rd cyclotomic polynomial.

Original entry on oeis.org

1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, 0
Offset: 0

Views

Author

Keywords

Comments

Periodic with period length 33. - Ray Chandler, Apr 03 2017

Crossrefs

Column k=33 of A291137.

Programs

  • Magma
    t:=33; u:=3; m:=u*t+3; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/CyclotomicPolynomial(t))); // Bruno Berselli, Apr 04 2014
  • Maple
    with(numtheory,cyclotomic); c := n->series(1/cyclotomic(n,x),x,80);
  • Mathematica
    CoefficientList[Series[1/Cyclotomic[33, x], {x, 0, 100}], x] (* Vincenzo Librandi, Apr 04 2014 *)
    LinearRecurrence[{1, 0, -1, 1, 0, -1, 1, 0, -1, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1},{1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, 0, 0, 0, 0, 0, 0},81] (* Ray Chandler, Sep 15 2015 *)
  • PARI
    Vec(1/polcyclo(33)+O(x^99)) \\ Charles R Greathouse IV, Mar 24 2014
    

Formula

G.f.: 1/(1 - x + x^3 - x^4 + x^6 - x^7 + x^9 - x^10 + x^11 - x^13 + x^14 - x^16 + x^17 - x^19 + x^20). - Ilya Gutkovskiy, Aug 19 2017
a(n) = (18*m^10 - 950*m^9 + 21645*m^8 - 278400*m^7 + 2216844*m^6 - 11256630*m^5 + 36087705*m^4 - 69333700*m^3 + 70537788*m^2 - 27994320*m + 1814400) * (3*w^2 - 7*w + 2) / 3628800 where m = (n mod 11) and w = (floor(n/11) mod 3). - Luce ETIENNE, Nov 20 2018

A014064 Coefficients of the reciprocal of the 55th cyclotomic polynomial.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Periodic with period length 55. - Ray Chandler, Apr 03 2017

Crossrefs

Cf. similar sequences listed in A240328.

Programs

  • Maple
    with(numtheory,cyclotomic); c := n->series(1/cyclotomic(n,x),x,80);
  • Mathematica
    CoefficientList[Series[1/Cyclotomic[55, x], {x, 0, 200}], x] (* Vincenzo Librandi, Apr 05 2014 *)
    LinearRecurrence[{1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 0, 1, 0, 0, -1, 0, 1, 0, 0, -1, 0, 0, 1, 0, -1, 0, 0, 1, 0, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1},{1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},81] (* Ray Chandler, Sep 15 2015 *)
  • PARI
    Vec(1/polcyclo(55) + O(x^99)) \\ Michel Marcus, Jan 25 2019

Formula

a(n) = (5*w - 1)*(w - 2)*(w - 3)*(w - 4)*(63*m^4 - 350*m^3 + 630*m^2 - 325*m + 12)*(m - 5)!/(43545600*(m - 11)!), where m = n mod 11 and w = floor(n/11) mod 5. - Luce ETIENNE, Nov 21 2018

Extensions

Name edited by Wolfdieter Lang, Jan 25 2019
Showing 1-10 of 12 results. Next