cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A186646 Every fourth term of the sequence of natural numbers 1,2,3,4,... is halved.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 4, 9, 10, 11, 6, 13, 14, 15, 8, 17, 18, 19, 10, 21, 22, 23, 12, 25, 26, 27, 14, 29, 30, 31, 16, 33, 34, 35, 18, 37, 38, 39, 20, 41, 42, 43, 22, 45, 46, 47, 24, 49, 50, 51, 26, 53, 54, 55, 28, 57, 58, 59, 30, 61, 62, 63, 32, 65, 66, 67, 34, 69, 70, 71, 36, 73, 74, 75, 38, 77, 78, 79, 40, 81, 82, 83, 42, 85, 86, 87, 44, 89, 90, 91, 46, 93, 94, 95, 48, 97, 98, 99
Offset: 1

Views

Author

R. J. Mathar, Feb 25 2011

Keywords

Comments

a(n) is the length of the period of the sequence k^2 mod n, k=1,2,3,4,..., i.e., the length of the period of A000035 (n=2), A011655 (n=3), A000035 (n=4), A070430 (n=5), A070431 (n=6), A053879 (n=7), A070432 (n=8), A070433 (n=9), A008959 (n=10), A070434 (n=11), A070435 (n=12) etc.
From Franklin T. Adams-Watters, Feb 24 2011: (Start)
Clearly if gcd(n,m) = 1, a(nm) = lcm(a(n),a(m)), so it suffices to establish this for prime powers.
If p is a prime, the period must divide p, but k^2 mod p is not constant, so a(p) = p.
a(p^e), e > 1, must be divisible by a(p^(e-1)), and must divide p^e. If p != 2, (p^(e-1)+1)^2 = p^(2e-2)+2p^(e-1)+1 == 2p^(e-1)+1 (mod p^2), so a(p^e) != p^(e-1); it must then be e.
By inspection, a(4) = 2 and a(8) = 4.
This leaves a(2^e), e > 3. But then (2^(e-2)+1)^2 = 2^(2e-4)+2^(e-1)+1 == 2^(e-1)+1 (mod 2^e), so a(n) > 2^(e-2). On the other hand, (2^(e-1)+c)^2 = 2^(2e-2)+c2^e+c^2 == c^2 (mod 2^e). Hence the period is 2^(e-1). (End)

Crossrefs

Cf. A000224 (size of the set of moduli of k^2 mod n), A019554, A060819, A061037, A090129, A142705, A164115, A283971.

Programs

  • Maple
    A186646 := proc(n) if n mod 4 = 0 then n/2 ; else n ; end if; end proc ;
  • Mathematica
    Flatten[Table[{n,n+1,n+2,(n+3)/2},{n,1,101,4}]] (* or *) LinearRecurrence[ {0,0,0,2,0,0,0,-1},{1,2,3,2,5,6,7,4},100] (* Harvey P. Dale, May 30 2014 *)
    Table[n (7 - (-1)^n - 2 Cos[n Pi/2])/8, {n, 100}] (* Federico Provvedi , Jan 02 2018 *)
  • PARI
    a(n)=if(n%4,n,n/2) \\ Charles R Greathouse IV, Oct 16 2015
    
  • Python
    def A186646(n): return n if n&3 else n>>1 # Chai Wah Wu, Jan 10 2023

Formula

a(n) = 2*a(n-4) - a(n-8).
a(4n) = 2n; a(4n+1) = 4n+1; a(4n+2) = 4n+2; a(4n+3) = 4n+3.
a(n) = n/A164115(n).
G.f.: x*(1 + 2*x + 3*x^2 + 2*x^3 + 3*x^4 + 2*x^5 + x^6) / ( (x-1)^2*(1+x)^2*(x^2+1)^2 ).
Dirichlet g.f.: (1-2/4^s)*zeta(s-1).
A019554(n) | a(n). - Charles R Greathouse IV, Feb 24 2011
a(n) = n*(7 - (-1)^n - (-i)^n - i^n)/8, with i=sqrt(-1). - Bruno Berselli, Feb 25 2011
Multiplicative with a(p^e)=2^e if p=2 and e<=1; a(p^e)=2^(e-1) if p=2 and e>=2; a(p^e)=p^e otherwise. - David W. Wilson, Feb 26 2011
a(n) * A060819(n+2) = A142705(n+1) = A061037(2n+2). - Paul Curtz, Mar 02 2011
a(n) = n - (n/2)*floor(((n-1) mod 4)/3). - Gary Detlefs, Apr 14 2013
a(2^n) = A090129(n+1). - R. J. Mathar, Oct 09 2014
a(n) = n*(7 - (-1)^n - 2*cos(n*Pi/2))/8. - Federico Provvedi, Jan 02 2018
E.g.f.: (1/4)*x*(4*cosh(x) + sin(x) + 3*sinh(x)). - Stefano Spezia, Jan 26 2020
Sum_{k=1..n} a(k) ~ (7/16) * n^2. - Amiram Eldar, Nov 28 2022

A174452 a(n) = n^2 mod 1000.

Original entry on oeis.org

0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961, 24, 89, 156, 225, 296, 369, 444, 521, 600, 681, 764, 849, 936, 25, 116, 209, 304, 401, 500, 601, 704, 809, 916, 25
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 21 2010

Keywords

Comments

a(n) = A000290(n) for n < 32, but a(32) = 24;
A008959(n) = a(n) mod 10; A002015(n) = a(n) mod 100;
periodic with period 500: a(n+500)=a(n) and a(250*n+k)=a(250*n-k) for k <= 250*n;
a(n) = (n mod 1000)^2 mod 1000;
a(m*n) = a(m)*a(n) mod 1000;
A122986 gives the range of this sequence;
a(n) = n for n = 0, 1, and 376.

Examples

			Some calculations for n=982451653, to be realized by hand:
a(n) = (53^2 + 200*6*3) mod 1000 = 6409 mod 1000 = 409;
a(n) = (653^2) mod 1000 = 426409 mod 1000 = 409;
a(n) = a(n mod 500) = a(153) = 409;
a(n) = 965211250482432409 mod 1000 = 409.
		

Crossrefs

Programs

Formula

a(n) = ((n mod 100)^2 + 200 * (floor(n/100) mod 10) * (n mod 10)) mod 1000.

A002015 a(n) = n^2 reduced mod 100.

Original entry on oeis.org

0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 0, 21, 44, 69, 96, 25, 56, 89, 24, 61, 0, 41, 84, 29, 76, 25, 76, 29, 84, 41, 0, 61, 24, 89, 56, 25, 96, 69, 44, 21, 0, 81, 64, 49, 36, 25, 16, 9, 4, 1, 0, 1, 4, 9, 16, 25, 36, 49, 64, 81
Offset: 0

Views

Author

Keywords

Comments

Periodic with period 50: (0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 0, 21, 44, 69, 96, 25, 56, 89, 24, 61, 0, 41, 84, 29, 76, 25, 76, 29, 84, 41, 0, 61, 24, 89, 56, 25, 96, 69, 44, 21, 0, 81, 64, 49, 36, 25, 16, 9, 4, 1) and next term is 0. The period is symmetrical about the "midpoint" 25. - Zak Seidov, Oct 26 2009
A010461 gives the range of this sequence. - Reinhard Zumkeller, Mar 21 2010

Crossrefs

Programs

Formula

From Reinhard Zumkeller, Mar 21 2010: (Start)
a(n) = (n mod 10) * ((n mod 10) + 20 * ((n\10) mod 10)) mod 100.
a(n) = A174452(n) mod 100; A008959(n) = a(n) mod 10;
a(m*n) = a(m)*a(n) mod 100;
a(n) = (n mod 100)^2 mod 100;
a(n) = n for n = 0, 1, and 25. (End)

Extensions

Definition rephrased at the suggestion of Zak Seidov, Oct 26 2009

A112651 Numbers k such that k^2 == k (mod 11).

Original entry on oeis.org

0, 1, 11, 12, 22, 23, 33, 34, 44, 45, 55, 56, 66, 67, 77, 78, 88, 89, 99, 100, 110, 111, 121, 122, 132, 133, 143, 144, 154, 155, 165, 166, 176, 177, 187, 188, 198, 199, 209, 210, 220, 221, 231, 232, 242, 243, 253, 254, 264, 265, 275, 276, 286, 287, 297, 298
Offset: 1

Views

Author

Jeremy Gardiner, Dec 28 2005

Keywords

Comments

Numbers that are congruent to {0,1} (mod 11). - Philippe Deléham, Oct 17 2011

Examples

			12 is a term because 12*12 = 144 == 1 (mod 11) and 12 == 1 (mod 11).
		

Crossrefs

Cf. A010880 (n mod 11), A070434 (n^2 mod 11).

Programs

  • Maple
    m = 11 for n = 1 to 300 if n^2 mod m = n mod m then print n; next n
  • Mathematica
    Select[Range[0,300],PowerMod[#,2,11]==Mod[#,11]&] (* or *) LinearRecurrence[ {1,1,-1},{0,1,11},60] (* Harvey P. Dale, Apr 19 2015 *)
  • PARI
    a(n)=11*n/2-31/4-9*(-1)^n/4 \\ Charles R Greathouse IV, Oct 16 2015

Formula

a(n) = 11*n - a(n-1) - 21 (with a(1)=0). - Vincenzo Librandi, Nov 13 2010
From R. J. Mathar, Oct 08 2011: (Start)
a(n) = 11*n/2 - 31/4 - 9*(-1)^n/4.
G.f.: x^2*(1+10*x) / ( (1+x)*(x-1)^2 ). (End)
a(n+1) = Sum_{k>=0} A030308(n,k)*A005015(k-1) with A005015(-1)=1. - Philippe Deléham, Oct 17 2011

Extensions

Edited by N. J. A. Sloane, Aug 19 2010
Definition clarified by Harvey P. Dale, Apr 19 2015

A070436 a(n) = n^2 mod 13.

Original entry on oeis.org

0, 1, 4, 9, 3, 12, 10, 10, 12, 3, 9, 4, 1, 0, 1, 4, 9, 3, 12, 10, 10, 12, 3, 9, 4, 1, 0, 1, 4, 9, 3, 12, 10, 10, 12, 3, 9, 4, 1, 0, 1, 4, 9, 3, 12, 10, 10, 12, 3, 9, 4, 1, 0, 1, 4, 9, 3, 12, 10, 10, 12, 3, 9, 4, 1, 0, 1, 4, 9, 3, 12, 10, 10, 12, 3, 9, 4, 1, 0, 1, 4, 9, 3, 12, 10, 10, 12, 3, 9, 4
Offset: 0

Views

Author

N. J. A. Sloane, May 12 2002

Keywords

Crossrefs

Programs

Formula

G.f.: (x^12 +4*x^11 +9*x^10 +3*x^9 +12*x^8 +10*x^7 +10*x^6 +12*x^5 +3*x^4 +9*x^3 +4*x^2 +x)/(-x^13 +1). - Colin Barker, Aug 14 2012
a(n) = a(n-13). - G. C. Greubel, Mar 24 2016

A070437 a(n) = n^2 mod 14.

Original entry on oeis.org

0, 1, 4, 9, 2, 11, 8, 7, 8, 11, 2, 9, 4, 1, 0, 1, 4, 9, 2, 11, 8, 7, 8, 11, 2, 9, 4, 1, 0, 1, 4, 9, 2, 11, 8, 7, 8, 11, 2, 9, 4, 1, 0, 1, 4, 9, 2, 11, 8, 7, 8, 11, 2, 9, 4, 1, 0, 1, 4, 9, 2, 11, 8, 7, 8, 11, 2, 9, 4, 1, 0, 1, 4, 9, 2, 11, 8, 7, 8, 11, 2, 9, 4, 1, 0, 1, 4, 9, 2, 11, 8, 7, 8, 11, 2, 9, 4
Offset: 0

Views

Author

N. J. A. Sloane, May 12 2002

Keywords

Crossrefs

Programs

Formula

G.f.: -x*(1 +4*x +9*x^2 +2*x^3 +11*x^4 +8*x^5 +7*x^6 +8*x^7 +11*x^8 +2*x^9 +9*x^10 +4*x^11 +x^12) / ((x-1)*(1+x^6+x^5+x^4+x^3+x^2+x)*(1+x)*(1-x+x^2-x^3+x^4-x^5+x^6)). - R. J. Mathar, Jul 27 2015
a(n) = a(n-14). - G. C. Greubel, Mar 24 2016

A096459 Triangle read by rows: T(n,k) = n^2 mod prime(k), 1<=k<=n.

Original entry on oeis.org

1, 0, 1, 1, 0, 4, 0, 1, 1, 2, 1, 1, 0, 4, 3, 0, 0, 1, 1, 3, 10, 1, 1, 4, 0, 5, 10, 15, 0, 1, 4, 1, 9, 12, 13, 7, 1, 0, 1, 4, 4, 3, 13, 5, 12, 0, 1, 0, 2, 1, 9, 15, 5, 8, 13, 1, 1, 1, 2, 0, 4, 2, 7, 6, 5, 28, 0, 0, 4, 4, 1, 1, 8, 11, 6, 28, 20, 33, 1, 1, 4, 1, 4, 0, 16, 17, 8, 24, 14, 21, 5, 0, 1, 1, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 12 2004

Keywords

Comments

T(n,k)=0 iff k is a prime factor of n:
A001221(n) = number of zeros in n-th row;
T(n,1)=A000035(n);
T(n,2)=A011655(n) for n>1; T(n,3)=A070430(n) for n>2;
T(n,4)=A053879(n) for n>3; T(n,5)=A070434(n) for n>4;
T(n,6)=A070436(n) for n>5; T(n,7)=A054580(n) for n>6;
T(n,8)=A070441(n) for n>7; T(n,9)=A070445(n) for n>8;
T(n,10)=A070451(n) for n>9;
T(n,n)=A069547(n).

Examples

			Triangle begins:
1;
0, 1;
1, 0, 4;
0, 1, 1, 2;
1, 1, 0, 4, 3;
0, 0, 1, 1, 3, 10;
1, 1, 4, 0, 5, 10, 15;
......
		

Crossrefs

Programs

  • Mathematica
    Table[Mod[n^2, Prime[k]], {n, 1, 10}, {k, 1, n}] (* G. C. Greubel, May 20 2017 *)
Showing 1-7 of 7 results.