cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 33 results. Next

A130487 a(n) = Sum_{k=0..n} (k mod 9) (Partial sums of A010878).

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 36, 36, 37, 39, 42, 46, 51, 57, 64, 72, 72, 73, 75, 78, 82, 87, 93, 100, 108, 108, 109, 111, 114, 118, 123, 129, 136, 144, 144, 145, 147, 150, 154, 159, 165, 172, 180, 180, 181, 183, 186, 190, 195, 201, 208, 216, 216, 217, 219, 222, 226
Offset: 0

Views

Author

Hieronymus Fischer, May 31 2007

Keywords

Comments

Let A be the Hessenberg n X n matrix defined by A[1,j]=j mod 9, A[i,i]:=1, A[i,i-1]=-1. Then, for n >= 1, a(n)=det(A). - Milan Janjic, Jan 24 2010

Crossrefs

Programs

  • GAP
    a:=[0,1,3,6,10,15,21,28,36,36];; for n in [11..71] do a[n]:=a[n-1]+a[n-9]-a[n-10]; od; a; # G. C. Greubel, Aug 31 2019
  • Magma
    I:=[0,1,3,6,10,15,21,28,36,36]; [n le 10 select I[n] else Self(n-1) + Self(n-9) - Self(n-10): n in [1..71]]; // G. C. Greubel, Aug 31 2019
    
  • Maple
    seq(coeff(series(x*(1-9*x^8+8*x^9)/((1-x^9)*(1-x)^3), x, n+1), x, n), n = 0 .. 70); # G. C. Greubel, Aug 31 2019
  • Mathematica
    Accumulate[PadRight[{},120,Range[0,8]]] (* Harvey P. Dale, Dec 19 2018 *)
    Accumulate[Mod[Range[0,100],9]] (* Harvey P. Dale, Oct 16 2021 *)
  • PARI
    a(n) = sum(k=0, n, k % 9); \\ Michel Marcus, Apr 28 2018
    
  • Sage
    def A130487_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(x*(1-9*x^8+8*x^9)/((1-x^9)*(1-x)^3)).list()
    A130487_list(70) # G. C. Greubel, Aug 31 2019
    

Formula

a(n) = 36*floor(n/9) + A010878(n)*(A010878(n) + 1)/2.
G.f.: (Sum_{k=1..8} k*x^k)/((1-x^9)*(1-x)).
G.f.: x*(1 - 9*x^8 + 8*x^9)/((1-x^9)*(1-x)^3).

A010888 Digital root of n (repeatedly add the digits of n until a single digit is reached).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5
Offset: 0

Views

Author

Keywords

Comments

This is sometimes also called the additive digital root of n.
n mod 9 (A010878) is a very similar sequence.
Partial sums are given by A130487(n-1) + n (for n > 0). - Hieronymus Fischer, Jun 08 2007
Decimal expansion of 13717421/111111111 is 0.123456789123456789123456789... with period 9. - Eric Desbiaux, May 19 2008
Decimal expansion of 13717421 / 1111111110 = 0.0[123456789] (periodic) - Daniel Forgues, Feb 27 2017
a(A005117(n)) < 9. - Reinhard Zumkeller, Mar 30 2010
My friend Jahangeer Kholdi has found that 19 is the smallest prime p such that for each number n, a(p*n) = a(n). In fact we have: a(m*n) = a(a(m)*a(n)) so all numbers with digital root 1 (numbers of the form 9k + 1) have this property. See comment lines of A017173. Also we have a(m+n) = a(a(m) + a(n)). - Farideh Firoozbakht, Jul 23 2010

Examples

			The digits of 37 are 3 and 7, and 3 + 7 = 10. And the digits of 10 are 1 and 0, and 1 + 0 = 1, so a(37) = 1.
		

References

  • Martin Gardner, Mathematics, Magic and Mystery, 1956.

Crossrefs

Cf. A007953, A007954, A031347, A113217, A113218, A010878 (n mod 9), A010872, A010873, A010874, A010875, A010876, A010877, A010879, A004526, A002264, A002265, A002266, A017173, A031286 (additive persistence of n), (multiplicative digital root of n), A031346 (multiplicative persistence of n).

Programs

Formula

If n = 0 then a(n) = 0; otherwise a(n) = (n reduced mod 9), but if the answer is 0 change it to 9.
Equivalently, if n = 0 then a(n) = 0, otherwise a(n) = (n - 1 reduced mod 9) + 1.
If the initial 0 term is ignored, the sequence is periodic with period 9.
From Hieronymus Fischer, Jun 08 2007: (Start)
a(n) = A010878(n-1) + 1 (for n > 0).
G.f.: g(x) = x*(Sum_{k = 0..8}(k+1)*x^k)/(1 - x^9). Also: g(x) = x(9x^10 - 10x^9 + 1)/((1 - x^9)(1 - x)^2). (End)
a(n) = n - 9*floor((n-1)/9), for n > 0. - José de Jesús Camacho Medina, Nov 10 2014

A052382 Numbers without 0 in the decimal expansion, colloquial 'zeroless numbers'.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 97, 98, 99, 111, 112, 113
Offset: 1

Views

Author

Henry Bottomley, Mar 13 2000

Keywords

Comments

The entries 1 to 79 match the corresponding subsequence of A043095, but then 81, 91-98, 100, 102, etc. are only in one of the two sequences. - R. J. Mathar, Oct 13 2008
Complement of A011540; A168046(a(n)) = 1; A054054(a(n)) > 0; A007602, A038186, A038618, A052041, A052043, and A052045 are subsequences. - Reinhard Zumkeller, Apr 25 2012, Apr 07 2011, Dec 01 2009
a(n) = n written in base 9 where zeros are not allowed but nines are. The nine distinct digits used are 1, 2, 3, ..., 9 instead of 0, 1, 2, ..., 8. To obtain this sequence from the "canonical" base 9 sequence with zeros allowed, just replace any 0 with a 9 and then subtract one from the group of digits situated on the left. For example, 9^3 = 729 (10) (in base 10) = 1000 (9) (in base 9) = 889 (9-{0}) (in base 9 without zeros) because 100 (9) = [9-1]9 = 89 (9-{0}) and thus 1000 (9) = [89-1]9 = 889 (9-{0}). - Robin Garcia, Jan 15 2014
From Hieronymus Fischer, May 28 2014: (Start)
Inversion: Given a term m, the index n such that a(n) = m can be calculated by A052382_inverse(m) = m - sum_{1<=j<=k} floor(m/10^j)*9^(j-1), where k := floor(log_10(m)) [see Prog section for an implementation in Smalltalk].
Example 1: A052382_inverse(137) = 137 - (floor(137/10) + floor(137/100)*9) = 137 - (13*1 + 1*9) = 137 - 22 = 115.
Example 2: A052382_inverse(4321) = 4321 - (floor(4321/10) + floor(4321/100)*9 + floor(4321/1000)*81) = 4321 - (432*1 + 43*9 + 4*81) = 4321 - (432 + 387 + 324) = 3178. (End)
The sum of the reciprocals of these numbers from a(1)=1 to infinity, called the Kempner series, is convergent towards a limit: 23.103447... whose decimal expansion is in A082839. - Bernard Schott, Feb 23 2019
Integer n > 0 is encoded using bijective base-9 numeration, see Wikipedia link below. - Alois P. Heinz, Feb 16 2020

Examples

			For k >= 0, a(10^k) = (1, 11, 121, 1331, 14641, 162151, 1783661, 19731371, ...) = A325203(k). - _Hieronymus Fischer_, May 30 2012 and Jun 06 2012; edited by _M. F. Hasler_, Jan 13 2020
		

References

  • Paul Halmos, "Problems for Mathematicians, Young and Old", Dolciani Mathematical Expositions, 1991, p. 258.

Crossrefs

Cf. A004719, A052040, different from A067251.
Column k=9 of A214676.
Cf. A011540 (complement), A043489, A054054, A168046.
Cf. A052383 (without 1), A052404 (without 2), A052405 (without 3), A052406 (without 4), A052413 (without 5), A052414 (without 6), A052419 (without 7), A052421 (without 8), A007095 (without 9).
Zeroless numbers in some other bases <= 10: A000042 (base 2), A032924 (base 3), A023705 (base 4), A248910 (base 6), A255805 (base 8), A255808 (base 9).
Cf. A082839 (sum of reciprocals).
Cf. A038618 (subset of primes)

Programs

  • Haskell
    a052382 n = a052382_list !! (n-1)
    a052382_list = iterate f 1 where
    f x = 1 + if r < 9 then x else 10 * f x' where (x', r) = divMod x 10
    -- Reinhard Zumkeller, Mar 08 2015, Apr 07 2011
    
  • Magma
    [ n: n in [1..114] | not 0 in Intseq(n) ]; // Bruno Berselli, May 28 2011
    
  • Maple
    a:= proc(n) local d, l, m; m:= n; l:= NULL;
          while m>0 do d:= irem(m, 9, 'm');
            if d=0 then d:=9; m:= m-1 fi;
            l:= d, l
          od; parse(cat(l))
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Jan 11 2015
    is_zeroless := n -> not is(0 in convert(n, base, 10)):
    select(is_zeroless, [seq(1..113)]);  # Peter Luschny, Jun 20 2025
  • Mathematica
    A052382 = Select[Range[100], DigitCount[#, 10, 0] == 0 &] (* Alonso del Arte, Mar 10 2011 *)
  • PARI
    select( {is_A052382(n)=n&&vecmin(digits(n))}, [0..111]) \\ actually: is_A052382 = (bool) A054054. - M. F. Hasler, Jan 23 2013, edited Jan 13 2020
    
  • PARI
    a(n) = for (w=0, oo, if (n >= 9^w, n -= 9^w, return ((10^w-1)/9 + fromdigits(digits(n, 9))))) \\ Rémy Sigrist, Jul 26 2017
    
  • PARI
    apply( {A052382(n,L=logint(n,9))=fromdigits(digits(n-9^L>>3,9))+10^L\9}, [1..100])
    next_A052382(n, d=digits(n+=1))={for(i=1, #d, d[i]|| return(n-n%(d=10^(#d-i+1))+d\9)); n} \\ least a(k) > n. Used in A038618.
    ( {A052382_vec(n,M=1)=M--;vector(n, i, M=next_A052382(M))} )(99) \\ n terms >= M
    \\ See OEIS Wiki page (cf. LINKS) for more programs. - M. F. Hasler, Jan 11 2020
    
  • Python
    A052382 = [n for n in range(1,10**5) if not str(n).count('0')]
    # Chai Wah Wu, Aug 26 2014
    
  • Python
    from sympy import integer_log
    def A052382(n):
        m = integer_log(k:=(n<<3)+1,9)[0]
        return sum((1+(k-9**m)//(9**j<<3)%9)*10**j for j in range(m)) # Chai Wah Wu, Jun 27 2025
  • Smalltalk
    A052382
    "Answers the n-th term of A052382, where n is the receiver."
    ^self zerofree: 10
    A052382_inverse
    "Answers that index n which satisfy A052382(n) = m, where m is the receiver.”
    ^self zerofree_inverse: 10
    zerofree: base
    "Answers the n-th zerofree number in base base, where n is the receiver. Valid for base > 2.
    Usage: n zerofree: b [b = 10 for this sequence]
    Answer: a(n)"
    | n m s c bi ci d |
    n := self.
    c := base - 1.
    m := (base - 2) * n + 1 integerFloorLog: c.
    d := n - (((c raisedToInteger: m) - 1)//(base - 2)).
    bi := 1.
    ci := 1.
    s := 0.
    1 to: m
    do:
    [:i |
    s := (d // ci \\ c + 1) * bi + s.
    bi := base * bi.
    ci := c * ci].
    ^s
    zerofree_inverse: base
    "Answers the index n such that the n-th zerofree number in base base is = m, where m is the receiver. Valid for base > 2.
    Usage: m zerofree_inverse: b [b = 10 for this sequence]
    Answer: n"
    | m p q s |
    m := self.
    s := 0.
    p := base.
    q := 1.
    [p < m] whileTrue:
    [s := m // p * q + s.
    p := base * p.
    q := (base - 1) * q].
    ^m - s
    "by Hieronymus Fischer, May 28 2014"
    
  • sh
    seq 0 1000 | grep -v 0; # Joerg Arndt, May 29 2011
    

Formula

a(n+1) = f(a(n)) with f(x) = 1 + if x mod 10 < 9 then x else 10*f([x/10]). - Reinhard Zumkeller, Nov 15 2009
From Hieronymus Fischer, Apr 30, May 30, Jun 08 2012, Feb 17 2019: (Start)
a(n) = Sum_{j=0..m-1} (1 + b(j) mod 9)*10^j, where m = floor(log_9(8*n + 1)), b(j) = floor((8*n + 1 - 9^m)/(8*9^j)).
Also: a(n) = Sum_{j=0..m-1} (1 + A010878(b(j)))*10^j.
a(9*n + k) = 10*a(n) + k, k=1..9.
Special values:
a(k*(9^n - 1)/8) = k*(10^n - 1)/9, k=1..9.
a((17*9^n - 9)/8) = 2*10^n - 1.
a((9^n - 1)/8 - 1) = 10^(n-1) - 1, n > 1.
Inequalities:
a(n) <= (1/9)*((8*n+1)^(1/log_10(9)) - 1), equality holds for n=(9^k-1)/8, k>0.
a(n) > (1/10)*((8*n+1)^(1/log_10(9)) - 1), n > 0.
Lower and upper limits:
lim inf a(n)/10^log_9(8*n) = 1/10, for n -> infinity.
lim inf a(n)/n^(1/log_10(9)) = 8^(1/log_10(9))/10, for n -> infinity.
lim sup a(n)/10^log_9(8*n) = 1/9, for n -> infinity.
lim sup a(n)/n^(1/log_10(9)) = 8^(1/log_10(9))/9, for n -> infinity.
G.f.: g(x) = (x^(1/8)*(1-x))^(-1) Sum_{j>=0} 10^j*z(j)^(9/8)*(1 - 10z(j)^9 + 9z(j)^10)/((1-z(j))(1-z(j)^9)), where z(j) = x^9^j.
Also: g(x) = (1/(1-x)) Sum_{j>=0} (1 - 10(x^9^j)^9 + 9(x^9^j)^10)*x^9^j*f_j(x)/(1-x^9^j), where f_j(x) = 10^j*x^((9^j-1)/8)/(1-(x^9^j)^9). Here, the f_j obey the recurrence f_0(x) = 1/(1-x^9), f_(j+1)(x) = 10x*f_j(x^9).
Also: g(x) = (1/(1-x))*((Sum{k=0..8} h_(9,k)(x)) - 9*h_(9,9)(x)), where h_(9,k)(x) = Sum_{j>=0} 10^j*x^((9^(j+1)-1)/8)*x^(k*9^j)/(1-x^9^(j+1)).
Generic formulas for analogous sequences with numbers expressed in base p and only using the digits 1, 2, 3, ... d, where 1 < d < p:
a(n) = Sum_{j=0..m-1} (1 + b(j) mod d)*p^j, where m = floor(log_d((d-1)*n+1)), b(j) = floor(((d-1)*n+1-d^m)/((d-1)*d^j)).
Special values:
a(k*(d^n-1)/(d-1)) = k*(10^n-1)/9, k=1..d.
a(d*((2d-1)*d^(n-1)-1)/(d-1)) = ((d+9)*10^n-d)/9 = 10^n + d*(10^n-1)/9.
a((d^n-1)/(d-1)-1) = d*(10^(n-1)-1)/9, n > 1.
Inequalities:
a(n) <= (10^log_d((d-1)*n+1)-1)/9, equality holds for n = (d^k-1)/(d-1), k > 0.
a(n) > (d/10)*(10^log_d((d-1)*n+1)-1)/9, n > 0.
Lower and upper limits:
lim inf a(n)/10^log_d((d-1)*n) = d/90, for n -> infinity.
lim sup a(n)/10^log_d((d-1)*n) = 1/9, for n -> infinity.
G.f.: g(x) = (1/(1-x)) Sum_{j>=0} (1 - (d+1)(x^d^j)^d + d(x^d^j)^(d+1))*x^d^j*f_j(x)/(1-x^d^j), where f_j(x) = p^j*x^((d^j-1)/(d-1))/(1-(x^d^j)^d). Here, the f_j obey the recursion f_0(x) = 1/(1-x^d), f_(j+1)(x) = px*f_j(x^d).
(End)
A052382 = { n | A054054(n) > 0 }. - M. F. Hasler, Jan 23 2013
From Hieronymus Fischer, Feb 20 2019: (Start)
Sum_{n>=1} (-1)^(n+1)/a(n) = 0.696899720...
Sum_{n>=1} 1/a(n)^2 = 1.6269683705819...
Sum_{n>=1} 1/a(n) = 23.1034479... = A082839. This so-called Kempner series converges very slowly. For the calculation of the sum, it is helpful to use the following fraction of partial sums, which converges rapidly:
lim_{n->infinity} (Sum_{k=p(n)..p(n+1)-1} 1/a(k)) / (Sum_{k=p(n-1)..p(n)-1} 1/a(k)) = 9/10, where p(n) = (9^n-1)/8, n > 1.
(End)

Extensions

Typos in formula section corrected by Hieronymus Fischer, May 30 2012
Name clarified by Peter Luschny, Jun 20 2025

A037074 Numbers that are the product of a pair of twin primes.

Original entry on oeis.org

15, 35, 143, 323, 899, 1763, 3599, 5183, 10403, 11663, 19043, 22499, 32399, 36863, 39203, 51983, 57599, 72899, 79523, 97343, 121103, 176399, 186623, 213443, 272483, 324899, 359999, 381923, 412163, 435599, 656099, 675683, 685583, 736163
Offset: 1

Views

Author

Keywords

Comments

Each entry is the product of p and p+2 where both p and p+2 are prime, i.e., the product of the lesser and greater of a twin prime pair.
Except for the first term, all entries have digital root 8. - Lekraj Beedassy, Jun 11 2004
The above statement follows from p > 3 => (p,p+2) = (6k-1,6k+1) => p*(p+2) = 36k^2 - 1 == 8 (mod 9), and A010888 === A010878 (mod 9). - M. F. Hasler, Jan 11 2013
Albert A. Mullin states that m is a product of twin primes iff phi(m)*sigma(m) = (m-3)*(m+1), where phi(m) = A000010(m) and sigma(m) = A000203(m). Of course, for a product of distinct primes p*q we know sigma(p*q) = (p+1)*(q+1) and if p, q, are twin primes, say q = p + 2, then sigma(p*q) = (p+1)*(q+1) = (p+1)*(p+3). - Jonathan Vos Post, Feb 21 2006
Also the area of twin prime rectangles. A twin prime rectangle is a rectangle whose sides are components of twin prime pairs. E.g., the twin prime pair (3,5) produces a 3 X 5 unit rectangle which has area 15 square units. - Cino Hilliard, Jul 28 2006
Except for 15, a product of twin primes is of the form 36k^2 - 1 (cf. A136017, A002822). - Artur Jasinski, Dec 12 2007
A072965(a(n)) = 1; A072965(m) mod A037074(n) > 0 for all m. - Reinhard Zumkeller, Jan 29 2008
The number of terms less than 10^(2n) is A007508(n). - Robert G. Wilson v, Feb 08 2012
If m is the product of twin primes, then sigma(m) = m + 1 + 2*sqrt(m + 1), phi(m) = m + 1 - 2*sqrt(m + 1). pmin(m) = sqrt(m + 1) - 1, pmax(m) = sqrt(m + 1) + 1. - Wesley Ivan Hurt, Jan 06 2013
Semiprimes of the form 4*k^2 - 1. - Vincenzo Librandi, Apr 13 2013

Examples

			a(2)=35 because 5*7=35, that is (5,7) is the 2nd pair of twin primes.
		

References

  • Albert A. Mullin, "Bicomposites, twin primes and arithmetic progression", Abstract 04T-11-48, Abstracts of AMS, Vol. 25, No. 4, 2004, p. 795.

Crossrefs

Cf. A000010, A000203, A001359, A006512, A014574, A136017, A074480 (multiplicative closure), A209328.
Cf. A071700 (subsequence).
Cf. A075369.

Programs

  • Haskell
    a037074 = subtract 1 . a075369  -- Reinhard Zumkeller, Feb 10 2015
    -- Reinhard Zumkeller, Feb 10 2015, Aug 14 2011
  • Magma
    [p*(p+2): p in PrimesUpTo(1000) | IsPrime(p+2)];  // Bruno Berselli, Jul 08 2011
    
  • Magma
    IsSemiprime:=func; [s: n in [1..500] | IsSemiprime(s) where s is 4*n^2-1]; // Vincenzo Librandi, Apr 13 2013
    
  • Maple
    ZL:=[]: for p from 1 to 863 do if (isprime(p) and isprime(p+2) ) then ZL:=[op(ZL),(p*(p+2))]; fi; od; print(ZL); # Zerinvary Lajos, Mar 07 2007
    for i from 1 to 150 do if ithprime(i+1) = ithprime(i) + 2 then print({ithprime(i)*ithprime(i+1)}); fi; od; # Zerinvary Lajos, Mar 19 2007
  • Mathematica
    s = Select[ Prime@ Range@170, PrimeQ[ # + 2] &]; s(s + 2) (* Robert G. Wilson v, Feb 21 2006 *)
    (* For checking large numbers, the following code is better. For instance, we could use the fQ function to determine that 229031718473564142083 is in this sequence. *) fQ[n_] := Block[{fi = FactorInteger[n]}, Last@# & /@ fi == {1, 1} && Differences[ First@# & /@ fi] == {2}]; Select[ Range[750000], fQ] (* Robert G. Wilson v, Feb 08 2012 *)
    Times@@@Select[Partition[Prime[Range[500]],2,1],Last[#]-First[#]==2&] (* Harvey P. Dale, Oct 16 2012 *)
  • PARI
    g(n) = for(x=1,n,if(prime(x+1)-prime(x)==2,print1(prime(x)*prime(x+1)","))) \\ Cino Hilliard, Jul 28 2006
    

Formula

a(n) = A001359(n)*A006512(n). A000010(a(n))*A000203(a(n)) = (a(n)-3)*(a(n)+1). - Jonathan Vos Post, Feb 21 2006
a(n) = (A014574(n))^2 - 1. a(n+1) = (6*A002822(n))^2 - 1. - Lekraj Beedassy, Sep 02 2006
a(n) = A075369(n) - 1. - Reinhard Zumkeller, Feb 10 2015
Sum_{n>=1} 1/a(n) = A209328. - Amiram Eldar, Nov 20 2020
A000010(a(n)) == 0 (mod 8). - Darío Clavijo, Oct 26 2022

Extensions

More terms from Erich Friedman

A052223 Numbers whose sum of digits is 9.

Original entry on oeis.org

9, 18, 27, 36, 45, 54, 63, 72, 81, 90, 108, 117, 126, 135, 144, 153, 162, 171, 180, 207, 216, 225, 234, 243, 252, 261, 270, 306, 315, 324, 333, 342, 351, 360, 405, 414, 423, 432, 441, 450, 504, 513, 522, 531, 540, 603, 612, 621, 630, 702, 711, 720, 801, 810
Offset: 1

Views

Author

Henry Bottomley, Feb 01 2000

Keywords

Comments

Any term of this sequence with an 11 appended cannot have 11 as prime factor. See A075154. [Lekraj Beedassy, Sep 27 2009]
A007953(a(n)) = 9; number of repdigits = #{9,333,1^9} = A242627(9) = 3. - Reinhard Zumkeller, Jul 17 2014
A010872(a(n)) = A010878(a(n)) = 0. - Ilya Gutkovskiy, Jun 04 2016

Crossrefs

Cf. A007953.
Row n=9 of A245062.
Cf. A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225(14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).

Programs

  • Haskell
    a052223 n = a052223_list !! (n-1)
    a052223_list = filter ((== 9) . a007953) [0..]
    -- Reinhard Zumkeller, Jul 17 2014
  • Magma
    [n: n in [1..1500] | &+Intseq(n) eq 9 ]; // Vincenzo Librandi, Mar 08 2013
    
  • Mathematica
    Select[Range[1500], Total[IntegerDigits[#]] == 9 &] (* Vincenzo Librandi, Mar 08 2013 *)

Extensions

More terms from Larry Reeves (Larryr(AT)acm.org), Sep 05 2000
Offset changed by Bruno Berselli, Mar 07 2013

A070366 a(n) = 5^n mod 9.

Original entry on oeis.org

1, 5, 7, 8, 4, 2, 1, 5, 7, 8, 4, 2, 1, 5, 7, 8, 4, 2, 1, 5, 7, 8, 4, 2, 1, 5, 7, 8, 4, 2, 1, 5, 7, 8, 4, 2, 1, 5, 7, 8, 4, 2, 1, 5, 7, 8, 4, 2, 1, 5, 7, 8, 4, 2, 1, 5, 7, 8, 4, 2, 1, 5, 7, 8, 4, 2, 1, 5, 7, 8, 4, 2, 1, 5, 7, 8, 4, 2, 1, 5, 7, 8, 4, 2, 1, 5, 7, 8, 4, 2, 1, 5, 7, 8, 4, 2, 1, 5, 7, 8, 4, 2, 1, 5, 7
Offset: 0

Views

Author

N. J. A. Sloane, May 12 2002

Keywords

Comments

Period 6: repeat [1, 5, 7, 8, 4, 2].
Also the digital root of 5^n. - Cino Hilliard, Dec 31 2004
Digital root of the powers of any number congruent to 5 mod 9. - Alonso del Arte, Jan 26 2014

References

  • Cecil Balmond, Number 9: The Search for the Sigma Code. Munich, New York: Prestel (1998): 203.

Crossrefs

Cf. Digital roots of powers of c mod 9: c = 2, A153130; c = 4, A100402; c = 7, A070403; c = 8, A010689.

Programs

Formula

From R. J. Mathar, Apr 20 2010: (Start)
a(n) = a(n-1) - a(n-3) + a(n-4) for n>3.
G.f.: ( 1+4*x+2*x^2+2*x^3 ) / ( (1-x)*(1+x)*(x^2-x+1) ). (End)
a(n) = 1/2^n (mod 9), n >= 0. - Wolfdieter Lang, Feb 18 2014
a(n) = A010878(A000351(n)). - Michel Marcus, Feb 20 2014
From G. C. Greubel, Mar 05 2016: (Start)
a(n) = a(n-6) for n>5.
E.g.f.: (1/2)*(9*exp(x) - exp(-x) + 2*sqrt(3)*exp(x/2)*sin(sqrt(3)*x/2) - 6*exp(x/2)*cos(sqrt(3)*x/2)). (End)
a(n) = (9 - cos(n*Pi) - 6*cos(n*Pi/3) + 2*sqrt(3)*sin(n*Pi/3))/2. - Wesley Ivan Hurt, Jun 28 2016
a(n) = 2^((-n) mod 6) mod 9. - Joe Slater, Mar 23 2017
a(n) = A007953(5*a(n-1)) = A010888(5*a(n-1)). - Stefano Spezia, Mar 20 2025

A168182 Characteristic function of numbers that are not multiples of 9.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 30 2009

Keywords

Examples

			G.f. = x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^10 + x^11 + x^12 + x^13 + ...
		

Crossrefs

Programs

Formula

Euler transform of length 9 sequence [1, 0, 0, 0, 0, 0, 0, -1, 1]. - Michael Somos, Mar 22 2011
Moebius transform is length 9 sequence [1, 0, 0, 0, 0, 0, 0, 0, -1]. - Michael Somos, Mar 22 2011
Expansion of x * (1 - x^8) / ((1 - x) * (1 - x^9)) in powers of x. - Michael Somos, Mar 22 2011
Multiplicative with a(p^e) = (if p=3 then 0^(e-1) else 1), p prime and e>0.
a(n) = a(n+9) = a(-n) for all n in Z.
a(n) = A000007(A010878(n)).
a(A168183(n)) = 1. a(A008591(n)) = 0.
A033441(n) = Sum_{k=0..n} a(k)*(n-k).
G.f.: -x*(1+x)*(1+x^2)*(1+x^4) / ( (x-1)*(1+x+x^2)*(x^6+x^3+1) ). - R. J. Mathar, Jan 07 2011
Dirichlet g.f. (1-3^(-2s))*zeta(s). - R. J. Mathar, Mar 06 2011
For the general case: the characteristic function of numbers that are not multiples of m is a(n)=floor((n-1)/m)-floor(n/m)+1, m,n > 0. - Boris Putievskiy, May 08 2013
a(n) = 1 - A267142(n). - Antti Karttunen, Oct 07 2017

A130486 a(n) = Sum_{k=0..n} (k mod 8) (Partial sums of A010877).

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 28, 29, 31, 34, 38, 43, 49, 56, 56, 57, 59, 62, 66, 71, 77, 84, 84, 85, 87, 90, 94, 99, 105, 112, 112, 113, 115, 118, 122, 127, 133, 140, 140, 141, 143, 146, 150, 155, 161, 168, 168, 169, 171, 174, 178, 183, 189, 196, 196, 197, 199, 202, 206
Offset: 0

Views

Author

Hieronymus Fischer, May 31 2007

Keywords

Comments

Let A be the Hessenberg n X n matrix defined by A[1,j] = j mod 8, A[i,i]:=1, A[i,i-1]=-1. Then, for n >= 1, a(n)=det(A). - Milan Janjic, Jan 24 2010

Crossrefs

Programs

  • GAP
    a:=[0,1,3,6,10,15,21,28,28];; for n in [10..71] do a[n]:=a[n-1]+a[n-8]-a[n-9]; od; a; # G. C. Greubel, Aug 31 2019
  • Magma
    I:=[0,1,3,6,10,15,21,28,28]; [n le 9 select I[n] else Self(n-1) + Self(n-8) - Self(n-9): n in [1..71]]; // G. C. Greubel, Aug 31 2019
    
  • Maple
    seq(coeff(series(x*(1-8*x^7+7*x^8)/((1-x^8)*(1-x)^3), x, n+1), x, n), n = 0 .. 40); # G. C. Greubel, Aug 31 2019
  • Mathematica
    Array[28 Floor[#1/8] + #2 (#2 + 1)/2 & @@ {#, Mod[#, 8]} &, 61, 0] (* Michael De Vlieger, Apr 28 2018 *)
    Accumulate[PadRight[{},100,Range[0,7]]] (* Harvey P. Dale, Dec 21 2018 *)
  • PARI
    a(n) = sum(k=0, n, k % 8); \\ Michel Marcus, Apr 28 2018
    
  • Sage
    def A130486_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(x*(1-8*x^7+7*x^8)/((1-x^8)*(1-x)^3)).list()
    A130486_list(70) # G. C. Greubel, Aug 31 2019
    

Formula

a(n) = 28*floor(n/8) + A010877(n)*(A010877(n) + 1)/2.
G.f.: (Sum_{k=1..7} k*x^k)/((1-x^8)*(1-x)).
G.f.: x*(1 - 8*x^7 + 7*x^8)/((1-x^8)*(1-x)^3).

A010076 a(n) = sum of base-9 digits of a(n-1) + sum of base-9 digits of a(n-2).

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 13, 13, 10, 7, 9, 8, 9, 9, 2, 3, 5, 8, 13, 13, 10, 7, 9, 8, 9, 9, 2, 3, 5, 8, 13, 13, 10, 7, 9, 8, 9, 9, 2, 3, 5, 8, 13, 13, 10, 7, 9, 8, 9, 9, 2, 3, 5, 8, 13, 13, 10, 7, 9, 8, 9, 9, 2, 3, 5, 8, 13, 13, 10, 7, 9, 8, 9, 9
Offset: 0

Views

Author

Keywords

Comments

The digital sum analog (in base 9) of the Fibonacci recurrence. - Hieronymus Fischer, Jun 27 2007
a(n) and Fib(n)=A000045(n) are congruent modulo 8 which implies that (a(n) mod 8) is equal to (Fib(n) mod 8) = A079344(n). Thus (a(n) mod 8) is periodic with the Pisano period A001175(8)=12. - Hieronymus Fischer, Jun 27 2007
For general bases p>2, we have the inequality 2<=a(n)<=2p-3 (for n>2). Actually, a(n)<=13=A131319(9) for the base p=9. - Hieronymus Fischer, Jun 27 2007

Crossrefs

Programs

  • Mathematica
    PadRight[{0, 1, 1}, 100, {8, 9, 9, 2, 3, 5, 8, 13, 13, 10, 7, 9}] (* Paolo Xausa, Aug 25 2024 *)

Formula

Periodic from n=3 with period 12. - Franklin T. Adams-Watters, Mar 13 2006
From Hieronymus Fischer, Jun 27 2007: (Start)
a(n) = a(n-1)+a(n-2)-8*(floor(a(n-1)/9)+floor(a(n-2)/9)).
a(n) = floor(a(n-1)/9)+floor(a(n-2)/9)+(a(n-1)mod 9)+(a(n-2)mod 9).
a(n) = (a(n-1)+a(n-2)+8*(A010878(a(n-1))+A010878(a(n-2))))/9.
a(n) = Fib(n)-8*sum{1A000045(n). (End)

Extensions

Incorrect comment removed by Michel Marcus, Apr 29 2018

A053844 (Sum of digits of n written in base 9) modulo 9.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 0, 2, 3, 4, 5, 6, 7, 8, 0, 1, 3, 4, 5, 6, 7, 8, 0, 1, 2, 4, 5, 6, 7, 8, 0, 1, 2, 3, 5, 6, 7, 8, 0, 1, 2, 3, 4, 6, 7, 8, 0, 1, 2, 3, 4, 5, 7, 8, 0, 1, 2, 3, 4, 5, 6, 8, 0, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 8, 0, 2, 3, 4, 5, 6, 7, 8, 0, 1, 3, 4, 5, 6, 7, 8
Offset: 0

Views

Author

Henry Bottomley, Mar 28 2000

Keywords

Crossrefs

Eighth row of the array in A141803.

Programs

  • Mathematica
    Mod[DigitSum[Range[0, 100], 9], 9] (* Paolo Xausa, Aug 09 2024 *)

Formula

a(n) = A010878(A053830(n)). - Paolo Xausa, Aug 09 2024
Showing 1-10 of 33 results. Next