cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A146321 Inverse binomial transform of A070366.

Original entry on oeis.org

1, 4, -2, 1, -5, 16, -35, 67, -128, 253, -509, 1024, -2051, 4099, -8192, 16381, -32765, 65536, -131075, 262147, -524288, 1048573, -2097149, 4194304, -8388611, 16777219, -33554432, 67108861, -134217725, 268435456
Offset: 0

Views

Author

Paul Curtz, Oct 30 2008

Keywords

Formula

G.f.: 1+ x*( 4+10*x+7*x^2 ) / ( (2*x+1)*(1+x+x^2) ). - R. J. Mathar, Oct 26 2011

Extensions

Edited by N. J. A. Sloane, Jan 04 2009

A153130 Period 6: repeat [1, 2, 4, 8, 7, 5].

Original entry on oeis.org

1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5
Offset: 0

Views

Author

Paul Curtz, Dec 19 2008

Keywords

Comments

Digital root of 2^n.
A regular version of Pitoun's sequence: a(n) = A029898(n+1).
Also obtained from permutations of A141425, A020806, A070366, A153110, A153990, A154127, A154687, or A154815.
This sequence and its (again period 6) repeated differences produce the table:
1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, ...
1, 2, 4, -1, -2, -4, 1, 2, 4, -1, -2, ...
1, 2, -5, -1, -2, 5, 1, 2, -5, -1, -2, ...
1, -7, 4, -1, 7, -4, 1, -7, 4, -1, 7, ...
-8, 11, -5, 8,-11, 5, -8, 11, -5, 8,-11, ...
19,-16, 13,-19, 16,-13, 19,-16, 13,-19, 16, ...
-35, 29,-32, 35,-29, 32,-35, 29,-32, 35,-29, ...
64,-61, 67,-64, 61,-67, 64,-61, 67,-64, 61, ...
If each entry of this table is read modulo 9 we obtain the very regular table:
1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, ...
1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, ...
1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, ...
1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, ...
1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, ...
1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, ...
Also the decimal expansion of the constant 125/1001. - R. J. Mathar, Jan 23 2009
Digital root of the powers of any number congruent to 2 mod 9. - Alonso del Arte, Jan 26 2014

References

  • Cecil Balmond, Number 9: The Search for the Sigma Code. Munich, New York: Prestel (1998): 203.

Crossrefs

Cf. digital roots of powers of c mod 9: c = 4, A100402; c = 5, A070366; c = 7, A070403; c = 8, A010689.

Programs

Formula

a(n) + a(n+3) = 9 = A010734(n).
G.f.: (1+x+2x^2+5x^3)/((1-x)(1+x)(1-x+x^2)). - R. J. Mathar, Jan 23 2009
a(n) = A082365(n) mod 9. - Paul Curtz, Mar 31 2009
a(n) = -1/2*cos(Pi*n) - 3*cos(1/3*Pi*n) - 3^(1/2)*sin(1/3*Pi*n) + 9/2. - Leonid Bedratyuk, May 13 2012
a(n) = A010888(A004000(n+1)). - Ivan N. Ianakiev, Nov 27 2014
From Wesley Ivan Hurt, Apr 20 2015: (Start)
a(n) = a(n-6) for n>5.
a(n) = a(n-1) - a(n-3) + a(n-4) for n>3.
a(n) = (2+3*(n-1 mod 3))*(n mod 2) + (1+3*(-n mod 3))*(n-1 mod 2). (End)
a(n) = 2^n mod 9. - Nikita Sadkov, Oct 06 2018
From Stefano Spezia, Mar 20 2025: (Start)
E.g.f.: 4*cosh(x) - exp(x/2)*(3*cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2)) + 5*sinh(x).
a(n) = A007953(2*a(n-1)) = A010888(2*a(n-1)). (End)

Extensions

Edited by R. J. Mathar, Apr 09 2009

A010689 Periodic sequence: Repeat 1, 8.

Original entry on oeis.org

1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1
Offset: 0

Views

Author

Keywords

Comments

Also the digital root of 8^n. Also the decimal expansion of 2/11 = 0.181818181818... - Cino Hilliard, Dec 31 2004
Interleaving of A000012 and A010731. - Klaus Brockhaus, Apr 02 2010
Continued fraction expansion of (2 + sqrt(6))/4. - Klaus Brockhaus, Apr 02 2010
Digital root of the powers of any number congruent to 8 mod 9. - Alonso del Arte, Jan 26 2014

Examples

			0.18181818181818181818181818181818181818181...
		

References

  • Cecil Balmond, Number 9: The Search for the Sigma Code. Munich, New York: Prestel (1998): 203.

Crossrefs

Cf. A000012 (all 1's sequence), A010731 (all 8's sequence), A174925 (decimal expansion of (2 + sqrt(6))/4). [Klaus Brockhaus, Apr 02 2010]
Cf. Digital roots of powers of c mod 9: c = 2, A153130; c = 4, A100402; c = 5, A070366; c = 7, A070403.
Cf. sequences listed in Comments section of A283393.
Cf. A010888.

Programs

Formula

From Paul Barry, Sep 16 2004: (Start)
G.f.: (1 + 8*x)/((1 - x)*(1 + x)).
a(n) = (9 - 7*(-1)^n)/2.
a(n) = 8^(ceiling(n/2) - floor(n/2)).
a(n) = gcd((n-1)^3, (n+1)^3). (End)
E.g.f.: cosh(x) + 8*sinh(x). - Stefano Spezia, Feb 09 2025
a(n) = A010888(8*a(n-1)). - Stefano Spezia, Mar 20 2025

Extensions

Definition edited and keywords cons, cofr added by Klaus Brockhaus, Apr 02 2010

A082311 A Jacobsthal sequence trisection.

Original entry on oeis.org

1, 5, 43, 341, 2731, 21845, 174763, 1398101, 11184811, 89478485, 715827883, 5726623061, 45812984491, 366503875925, 2932031007403, 23456248059221, 187649984473771, 1501199875790165, 12009599006321323, 96076792050570581, 768614336404564651, 6148914691236517205
Offset: 0

Views

Author

Paul Barry, Apr 09 2003

Keywords

Crossrefs

Programs

  • Magma
    [2*8^n/3+(-1)^n/3 : n in [0..30]]; // Vincenzo Librandi, Aug 13 2011
    
  • Mathematica
    f[n_] := (2*8^n + (-1)^n)/3; Array[f, 25, 0] (* Robert G. Wilson v, Aug 13 2011 *)
  • PARI
    x='x+O('x^30); Vec((1-2*x)/((1+x)*(1-8*x))) \\ G. C. Greubel, Sep 16 2018

Formula

a(n) = (2*8^n + (-1)^n)/3 = A001045(3*n+1).
From R. J. Mathar, Feb 23 2009: (Start)
a(n) = 7*a(n-1) + 8*a(n-2).
G.f.: (1-2*x)/((1+x)*(1-8*x)). (End)
a(n) = A024494(3*n+1). a(n) = 8*a(n-1) + 3*(-1)^n. Sum of digits = A070366. - Paul Curtz, Nov 20 2007
a(n)= A007613(n) + A132805(n) = A081374(1+3*n). - Paul Curtz, Jun 06 2011
E.g.f.: (cosh(x) + 2*cosh(8*x) - sinh(x) + 2*sinh(8*x))/3. - Stefano Spezia, Jul 15 2024

A100402 Digital root of 4^n.

Original entry on oeis.org

1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7
Offset: 0

Views

Author

Cino Hilliard, Dec 31 2004

Keywords

Comments

Equals A141725 mod 9. - Paul Curtz, Sep 15 2008
Sequence is the digital root of A016777. - Odimar Fabeny, Sep 13 2010
Digital root of the powers of any number congruent to 4 mod 9. - Alonso del Arte, Jan 26 2014
Period 3: repeat [1, 4, 7]. - Wesley Ivan Hurt, Aug 26 2014
From Timothy L. Tiffin, Dec 02 2023: (Start)
The period 3 digits of this sequence are the same as those of A070403 (digital root of 7^n) but the order is different: [1, 4, 7] vs. [1, 7, 4].
The digits in this sequence appear in the decimal expansions of the following rational numbers: 49/333, 490/333, 4900/333, .... (End)

Examples

			4^2 = 16, digitalroot(16) = 7, the third entry.
		

References

  • Cecil Balmond, Number 9: The Search for the Sigma Code. Munich, New York: Prestel (1998): 203.

Crossrefs

Cf. Digital roots of powers of c mod 9: c = 2, A153130; c = 5, A070366; c = 7, A070403; c = 8, A010689.

Programs

Formula

a(n) = 4^n mod 9. - Zerinvary Lajos, Nov 25 2009
From R. J. Mathar, Apr 13 2010: (Start)
a(n) = a(n-3) for n>2.
G.f.: (1+4*x+7*x^2)/ ((1-x)*(1+x+x^2)). (End)
a(n) = A010888(A000302(n)). - Michel Marcus, Aug 25 2014
a(n) = 3*A010872(n) + 1. - Robert Israel, Aug 25 2014
a(n) = 4 - 3*cos(2*n*Pi/3) - sqrt(3)*sin(2*n*Pi/3). - Wesley Ivan Hurt, Jun 30 2016
a(n) = A153130(2n). - Timothy L. Tiffin, Dec 01 2023
a(n) = A010888(A001022(n)) = A010888(A009966(n)) = A010888(A009975(n)) = A010888(A009984(n)) = A010888(A087752(n)) = A010888(A121013(n)). - Timothy L. Tiffin, Dec 02 2023
a(n) = A010888(4*a(n-1)). - Stefano Spezia, Mar 20 2025

A070403 a(n) = 7^n mod 9.

Original entry on oeis.org

1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4
Offset: 0

Views

Author

N. J. A. Sloane, May 12 2002

Keywords

Comments

Also the digital root of 7^n. If we convert this to a repeating decimal 0.174174..., we get the rational number 58/333. - Cino Hilliard, Dec 31 2004
A141722 (1, 25, 121, 505, 2041, 8185) mod 9. Note A141722 = 10*A000975(2n) + A000975(2n+1). - Paul Curtz, Sep 15 2008
Digital root of the powers of any number congruent to 7 mod 9. - Alonso del Arte, Jan 26 2014

References

  • Cecil Balmond, Number 9: The Search for the Sigma Code. Munich, New York: Prestel (1998): 203.

Crossrefs

Cf. Digital roots of powers of c mod 9: c = 2, A153130; c = 4, A100402; c = 5, A070366; c = 8, A010689.

Programs

Formula

From R. J. Mathar, Feb 23 2009: (Start)
G.f.: (1+7*x+4*x^2)/((1-x)*(1+x+x^2)).
a(n+1) - a(n) = 3*A099837(n+3).
a(n) = 4 - 3*A049347(n). (End)
a(n) = a(n-3) for n>3. - G. C. Greubel, Mar 19 2016
a(n) = 4-2*sqrt(3)*sin((2*n+2)*Pi/3). - Wesley Ivan Hurt, Jun 09 2016
a(n) = A010888(7*a(n-1)). - Stefano Spezia, Mar 20 2025

A154127 Period 6: repeat [1, 2, 5, 8, 7, 4].

Original entry on oeis.org

1, 2, 5, 8, 7, 4, 1, 2, 5, 8, 7, 4, 1, 2, 5, 8, 7, 4, 1, 2, 5, 8, 7, 4, 1, 2, 5, 8, 7, 4, 1, 2, 5, 8, 7, 4, 1, 2, 5, 8, 7, 4, 1, 2, 5, 8, 7, 4, 1, 2, 5, 8, 7, 4, 1, 2, 5, 8, 7, 4, 1, 2, 5, 8, 7, 4, 1, 2, 5, 8, 7, 4, 1, 2, 5, 8, 7, 4, 1, 2, 5, 8, 7, 4, 1, 2
Offset: 0

Views

Author

Paul Curtz, Jan 05 2009

Keywords

Crossrefs

Programs

Formula

From R. J. Mathar, Feb 25 2009, Mar 09 2009: (Start)
a(n) = a(n-1) - a(n-3) + a(n-4) for n>3.
G.f.: (1+x+3*x^2+4*x^3)/((1-x)*(1+x)*(x^2-x+1)). (End)
a(n) = (27-cos(n*Pi)-20*cos(n*Pi/3)-4*sqrt(3)*sin(n*Pi/3))/6. - Wesley Ivan Hurt, Jun 17 2016

Extensions

Corrected numerator in g.f R. J. Mathar, Mar 09 2009

A141430 a(n) = A000111(n) mod 9.

Original entry on oeis.org

1, 1, 1, 2, 5, 7, 7, 2, 8, 7, 4, 2, 2, 7, 1, 2, 5, 7, 7, 2, 8, 7, 4, 2, 2, 7, 1, 2, 5, 7, 7, 2, 8, 7, 4, 2, 2, 7, 1, 2, 5, 7, 7, 2, 8, 7, 4, 2, 2, 7
Offset: 0

Views

Author

Paul Curtz, Aug 06 2008

Keywords

Comments

After the initial 1,1, the sequence is periodic with period 12.
This sequence's periodic part is a shuffled version of the two period-6 sequences A070366 and A010697. The sequence contains only the digits 1, 2, 4, 5, 7 and 8 (those of A141425).

Crossrefs

Programs

  • Python
    def A141430(n): return (2, 7, 1, 2, 5, 7, 7, 2, 8, 7, 4, 2)[n%12] if n>1 else 1 # Chai Wah Wu, Apr 17 2023

Formula

a(n) = A000111(n) mod 9 = A004099(n) mod 9.
a(n+12) = a(n), n > 1.
a(n) + a(n+6) = 9, n > 1.
a(n+11-p) - a(n+p) = 6 (p=0 or 5), 0 (p=1 or 4), -3 (p=2 or 3), any n > 1.
G.f.: (6x^8-5x^7+x^6+2x^5+3x^4+x^3+1) / ((1-x)(x^2+1)(x^4-x^2+1)). - R. J. Mathar, Dec 05 2008
a(n) = 9/2 +(-1)^floor(n/2)*A010686(n)/2 - 3*A014021(n), n > 1. - R. J. Mathar, Dec 05 2008
a(n) = 9/2 - (3/2)*cos(Pi*n/6) + (1/2)*3^(1/2)*sin(Pi*n/6) - (1/2)*cos(Pi*n/2) - (5/2)*sin(Pi*n/2) - (3/2)*cos(5*Pi*n/6) - (1/2)*3^(1/2)*sin(5*Pi*n/6). - Richard Choulet, Dec 12 2008

Extensions

Edited by R. J. Mathar, Dec 05 2008

A321483 a(n) = 7*2^n + (-1)^n.

Original entry on oeis.org

8, 13, 29, 55, 113, 223, 449, 895, 1793, 3583, 7169, 14335, 28673, 57343, 114689, 229375, 458753, 917503, 1835009, 3670015, 7340033, 14680063, 29360129, 58720255, 117440513, 234881023, 469762049, 939524095, 1879048193, 3758096383, 7516192769, 15032385535
Offset: 0

Views

Author

Paul Curtz, Nov 11 2018

Keywords

Comments

Difference table:
8, 13, 29, 55, 113, 223, 449, ...
5, 16, 26, 58, 110, 226, 446, 898, ...
11, 10, 32, 52, 116, 220, 452, 892, 1796, ...
-1, 22, 20, 64, 104, 232, 440, 904, 1784, 3592, ...
-2, 44, 40, 128, 208, 464, 880, 1808, 3568, 7184, ...
etc.
Every diagonal is a sequence of the form k*2^m.
a(n) is divisible by
. 5 if n is a term of A004767,
. 11 if n is a term of A016885,
. 13 if n is a term of A017533.

Crossrefs

Programs

  • Mathematica
    a[n_] := 7*2^n + (-1)^n ; Array[a, 32, 0] (* Amiram Eldar, Nov 12 2018 *)
    CoefficientList[Series[E^-x + 7 E^(2 x), {x, 0, 20}], x]*Table[n!, {n, 0, 20}] (* Stefano Spezia, Nov 12 2018 *)
    LinearRecurrence[{1,2},{8,13},40] (* Harvey P. Dale, Mar 18 2022 *)
  • PARI
    Vec((8 + 5*x) / ((1 + x)*(1 - 2*x)) + O(x^40)) \\ Colin Barker, Nov 11 2018

Formula

O.g.f.: (8 + 5*x) / ((1 + x)*(1 - 2*x)). - Colin Barker, Nov 11 2018
E.g.f.: exp(-x) + 7*exp(2*x). - Stefano Spezia, Nov 12 2018
a(n) = a(n-1) + 2*a(n-2).
a(n) = 2*a(n-1) + 3*(-1)^n for n>0, a(0)=8.
a(2*k) = 7*4^k + 1, a(2*k+1) = 14*4^k - 1.
a(n) = A014551(n) + A014551(n-1) + A014551(n-2).
a(n) = 2^(n+3) - 3*A001045(n).
a(n) mod 9 = A070366(n+3).
a(n) + a(n+1) = 21*2^n.

Extensions

Two terms corrected, and more terms added by Colin Barker, Nov 11 2018

A381487 Numbers which are a power of their digital root.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 81, 128, 256, 512, 729, 2401, 6561, 8192, 16384, 32768, 59049, 78125, 524288, 531441, 823543, 1048576, 2097152, 4782969, 33554432, 43046721, 67108864, 134217728, 282475249, 387420489, 1220703125, 2147483648, 3486784401, 4294967296
Offset: 1

Views

Author

Stefano Spezia, Feb 25 2025

Keywords

Examples

			a(12) = 128 is a term since 128 = 2^7 = A010888(128)^7.
		

Crossrefs

Digital root of k^n: A000012 (1), A153130 (2), A100401 (3), A100402 (4), A070366 (5), A100403 (6), A070403 (7), A010689 (8), A010734 (9).

Programs

  • Mathematica
    A010888[n_]:=n - 9*Floor[(n-1)/9]; kmax=5*10^6; a={0,1}; For[k=2, k<=kmax, k++, If[A010888[k]!=1, If[IntegerQ[Log[A010888[k],k]], AppendTo[a,k]]]]; a
  • PARI
    isok(k) = if ((k==0) || (k==1), return(1)); my(d=(k-1)%9+1); if (d>1, d^logint(k, d) == k); \\ Michel Marcus, Feb 26 2025
    
  • PARI
    lista(nn) = my(list = List()); listput(list, 0); listput(list, 1); for (n=2, 9, for (k=1, logint(nn, n), if ((n^k-1)%9+1 == n, listput(list, n^k)););); vecsort(Vec(list)); \\ Michel Marcus, Feb 27 2025

Formula

a(n) = A381491(n)^A381492(n).
Showing 1-10 of 15 results. Next