cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A154570 The main diagonal of the successive differences of A154127.

Original entry on oeis.org

1, 3, -4, 2, -6, -2, -14, -18, -46, -82, -174, -338, -686, -1362, -2734, -5458, -10926, -21842, -43694, -87378, -174766, -349522, -699054, -1398098, -2796206, -5592402, -11184814, -22369618, -44739246, -89478482, -178956974, -357913938, -715827886
Offset: 0

Views

Author

Paul Curtz, Jan 12 2009

Keywords

Crossrefs

Programs

Formula

a(n) = a(n-1) + 2*a(n-2), n>0.
a(n+2) = 2*(-1)^(n+1)*A140966(n).
a(n+5) = -2*A083582(n).
a(2n+1) = 3 - A078008(2n) = 3 - A047849(n).
a(2n+2) = -4 - A078008(2n+1) = -4 - A020988(n).
G.f.: (1+2*x-9*x^2)/((1+x)*(1-2*x)). - R. J. Mathar, Feb 25 2009

Extensions

Edited and extended by R. J. Mathar, Feb 25 2009

A153130 Period 6: repeat [1, 2, 4, 8, 7, 5].

Original entry on oeis.org

1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5
Offset: 0

Views

Author

Paul Curtz, Dec 19 2008

Keywords

Comments

Digital root of 2^n.
A regular version of Pitoun's sequence: a(n) = A029898(n+1).
Also obtained from permutations of A141425, A020806, A070366, A153110, A153990, A154127, A154687, or A154815.
This sequence and its (again period 6) repeated differences produce the table:
1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, ...
1, 2, 4, -1, -2, -4, 1, 2, 4, -1, -2, ...
1, 2, -5, -1, -2, 5, 1, 2, -5, -1, -2, ...
1, -7, 4, -1, 7, -4, 1, -7, 4, -1, 7, ...
-8, 11, -5, 8,-11, 5, -8, 11, -5, 8,-11, ...
19,-16, 13,-19, 16,-13, 19,-16, 13,-19, 16, ...
-35, 29,-32, 35,-29, 32,-35, 29,-32, 35,-29, ...
64,-61, 67,-64, 61,-67, 64,-61, 67,-64, 61, ...
If each entry of this table is read modulo 9 we obtain the very regular table:
1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, ...
1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, ...
1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, ...
1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, ...
1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, ...
1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, ...
Also the decimal expansion of the constant 125/1001. - R. J. Mathar, Jan 23 2009
Digital root of the powers of any number congruent to 2 mod 9. - Alonso del Arte, Jan 26 2014

References

  • Cecil Balmond, Number 9: The Search for the Sigma Code. Munich, New York: Prestel (1998): 203.

Crossrefs

Cf. digital roots of powers of c mod 9: c = 4, A100402; c = 5, A070366; c = 7, A070403; c = 8, A010689.

Programs

Formula

a(n) + a(n+3) = 9 = A010734(n).
G.f.: (1+x+2x^2+5x^3)/((1-x)(1+x)(1-x+x^2)). - R. J. Mathar, Jan 23 2009
a(n) = A082365(n) mod 9. - Paul Curtz, Mar 31 2009
a(n) = -1/2*cos(Pi*n) - 3*cos(1/3*Pi*n) - 3^(1/2)*sin(1/3*Pi*n) + 9/2. - Leonid Bedratyuk, May 13 2012
a(n) = A010888(A004000(n+1)). - Ivan N. Ianakiev, Nov 27 2014
From Wesley Ivan Hurt, Apr 20 2015: (Start)
a(n) = a(n-6) for n>5.
a(n) = a(n-1) - a(n-3) + a(n-4) for n>3.
a(n) = (2+3*(n-1 mod 3))*(n mod 2) + (1+3*(-n mod 3))*(n-1 mod 2). (End)
a(n) = 2^n mod 9. - Nikita Sadkov, Oct 06 2018
From Stefano Spezia, Mar 20 2025: (Start)
E.g.f.: 4*cosh(x) - exp(x/2)*(3*cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2)) + 5*sinh(x).
a(n) = A007953(2*a(n-1)) = A010888(2*a(n-1)). (End)

Extensions

Edited by R. J. Mathar, Apr 09 2009

A154595 Period 6: repeat [1, 3, 3, -1, -3, -3].

Original entry on oeis.org

1, 3, 3, -1, -3, -3, 1, 3, 3, -1, -3, -3, 1, 3, 3, -1, -3, -3, 1, 3, 3, -1, -3, -3, 1, 3, 3, -1, -3, -3, 1, 3, 3, -1, -3, -3, 1, 3, 3, -1, -3, -3, 1, 3, 3, -1, -3, -3, 1, 3, 3, -1, -3, -3, 1, 3, 3, -1, -3, -3, 1, 3, 3, -1, -3, -3, 1, 3, 3, -1, -3, -3, 1, 3
Offset: 0

Views

Author

Paul Curtz, Jan 12 2009

Keywords

Comments

First differences of A154127.

Crossrefs

Cf. A154127.

Programs

Formula

G.f.: ( 1+3*x+3*x^2 ) / ( (1+x)*(x^2-x+1) ). - R. J. Mathar, Dec 04 2011
From Wesley Ivan Hurt, Jun 23 2016: (Start)
a(n) + a(n-3) = 0 for n>2.
a(n) = (cos(n*Pi) + 2*cos(n*Pi/3) + 6*sqrt(3)*sin(n*Pi/3))/3. (End)

Extensions

Edited by N. J. A. Sloane, Jan 12 2009
Showing 1-3 of 3 results.