cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A133455 a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3), with a(0) = 4, a(1) = 2, a(2) = 1.

Original entry on oeis.org

4, 2, 1, 5, 16, 35, 67, 128, 253, 509, 1024, 2051, 4099, 8192, 16381, 32765, 65536, 131075, 262147, 524288, 1048573, 2097149, 4194304, 8388611, 16777219, 33554432, 67108861, 134217725, 268435456, 536870915, 1073741827, 2147483648, 4294967293, 8589934589, 17179869184
Offset: 0

Views

Author

Paul Curtz, Nov 27 2007

Keywords

Comments

Sequence is identical to its third differences.

Crossrefs

Programs

  • Magma
    a:=[4,2,1]; [n le 3 select a[n] else 3*Self(n-1) -3*Self(n-2)+2*Self(n-3):n in [1..35]]; // Marius A. Burtea, Jan 03 2020
    
  • Magma
    R:=PowerSeriesRing(Integers(), 35); Coefficients(R!( (4 - 10*x + 7*x^2)/((1 - 2*x)*(1 - x + x^2)))); // Marius A. Burtea, Jan 03 2020
  • Mathematica
    LinearRecurrence[{3, -3, 2},{4, 2, 1},15] (* Ray Chandler, Sep 23 2015 *)
  • PARI
    Vec((4 - 10*x + 7*x^2)/((1 - 2*x)*(1 - x + x^2)) + O(x^40)) \\ Andrew Howroyd, Jan 03 2020
    

Formula

a(n)-2^n = hexaperiodic 3, 0, -3, -3, 0, 3.
O.g.f: -(4 - 10*x + 7*x^2)/((2*x - 1)*(x^2 - x + 1)). - R. J. Mathar, Nov 30 2007
a(n) = 2^n + 3*A010892(n+1). - R. J. Mathar, Jul 20 2009
a(n) = (-1)^n*A146321(n + 1). - Andrew Howroyd, Jan 03 2020

Extensions

Terms a(15) and beyond from Andrew Howroyd, Jan 03 2020
Showing 1-1 of 1 results.