A321643 a(n) = 5*2^n - (-1)^n.
4, 11, 19, 41, 79, 161, 319, 641, 1279, 2561, 5119, 10241, 20479, 40961, 81919, 163841, 327679, 655361, 1310719, 2621441, 5242879, 10485761, 20971519, 41943041, 83886079, 167772161, 335544319, 671088641, 1342177279, 2684354561, 5368709119, 10737418241, 21474836479
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,2).
Programs
-
GAP
List([0..30],n->5*2^n-(-1)^n); # Muniru A Asiru, Dec 05 2018
-
Maple
[5*2^n-(-1)^n$n=0..30]; # Muniru A Asiru, Dec 05 2018
-
Mathematica
a[n_] := 5*2^n - (-1)^n; Array[a, 30, 0] (* Amiram Eldar, Dec 03 2018 *)
-
PARI
Vec((4 + 7*x) / ((1 + x)*(1 - 2*x)) + O(x^40)) \\ Colin Barker, Dec 04 2018
-
Python
for n in range(0,30): print(5*2**n - (-1)**n) # Stefano Spezia, Dec 05 2018
Formula
a(n+2) - a(n) = a(n+1) + a(n) = 15*2^n, n >= 0.
a(n) - 2*a(n-1) = period 2: repeat [3, -3], n > 0, a(0)=4, a(1)=11.
a(n+1) = 10*A051049(n) + period 2: repeat [1, 9].
a(n) = 12*2^n - A321483(n), n >= 0.
a(n) = 2^(n+2) + 3*A001045(n), n >= 0.
a(n) == A070366(n+4) (mod 9).
From Colin Barker, Dec 04 2018: (Start)
G.f.: (4 + 7*x) / ((1 + x)*(1 - 2*x)).
a(n) = a(n-1) + 2*a(n-2) for n > 1. (End)
E.g.f.: exp(-x)*(5*exp(3*x) - 1). - Elmo R. Oliveira, Aug 17 2024
Comments