cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A153130 Period 6: repeat [1, 2, 4, 8, 7, 5].

Original entry on oeis.org

1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5
Offset: 0

Views

Author

Paul Curtz, Dec 19 2008

Keywords

Comments

Digital root of 2^n.
A regular version of Pitoun's sequence: a(n) = A029898(n+1).
Also obtained from permutations of A141425, A020806, A070366, A153110, A153990, A154127, A154687, or A154815.
This sequence and its (again period 6) repeated differences produce the table:
1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, ...
1, 2, 4, -1, -2, -4, 1, 2, 4, -1, -2, ...
1, 2, -5, -1, -2, 5, 1, 2, -5, -1, -2, ...
1, -7, 4, -1, 7, -4, 1, -7, 4, -1, 7, ...
-8, 11, -5, 8,-11, 5, -8, 11, -5, 8,-11, ...
19,-16, 13,-19, 16,-13, 19,-16, 13,-19, 16, ...
-35, 29,-32, 35,-29, 32,-35, 29,-32, 35,-29, ...
64,-61, 67,-64, 61,-67, 64,-61, 67,-64, 61, ...
If each entry of this table is read modulo 9 we obtain the very regular table:
1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, ...
1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, ...
1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, ...
1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, ...
1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, ...
1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, ...
Also the decimal expansion of the constant 125/1001. - R. J. Mathar, Jan 23 2009
Digital root of the powers of any number congruent to 2 mod 9. - Alonso del Arte, Jan 26 2014

References

  • Cecil Balmond, Number 9: The Search for the Sigma Code. Munich, New York: Prestel (1998): 203.

Crossrefs

Cf. digital roots of powers of c mod 9: c = 4, A100402; c = 5, A070366; c = 7, A070403; c = 8, A010689.

Programs

Formula

a(n) + a(n+3) = 9 = A010734(n).
G.f.: (1+x+2x^2+5x^3)/((1-x)(1+x)(1-x+x^2)). - R. J. Mathar, Jan 23 2009
a(n) = A082365(n) mod 9. - Paul Curtz, Mar 31 2009
a(n) = -1/2*cos(Pi*n) - 3*cos(1/3*Pi*n) - 3^(1/2)*sin(1/3*Pi*n) + 9/2. - Leonid Bedratyuk, May 13 2012
a(n) = A010888(A004000(n+1)). - Ivan N. Ianakiev, Nov 27 2014
From Wesley Ivan Hurt, Apr 20 2015: (Start)
a(n) = a(n-6) for n>5.
a(n) = a(n-1) - a(n-3) + a(n-4) for n>3.
a(n) = (2+3*(n-1 mod 3))*(n mod 2) + (1+3*(-n mod 3))*(n-1 mod 2). (End)
a(n) = 2^n mod 9. - Nikita Sadkov, Oct 06 2018
From Stefano Spezia, Mar 20 2025: (Start)
E.g.f.: 4*cosh(x) - exp(x/2)*(3*cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2)) + 5*sinh(x).
a(n) = A007953(2*a(n-1)) = A010888(2*a(n-1)). (End)

Extensions

Edited by R. J. Mathar, Apr 09 2009

A010689 Periodic sequence: Repeat 1, 8.

Original entry on oeis.org

1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1
Offset: 0

Views

Author

Keywords

Comments

Also the digital root of 8^n. Also the decimal expansion of 2/11 = 0.181818181818... - Cino Hilliard, Dec 31 2004
Interleaving of A000012 and A010731. - Klaus Brockhaus, Apr 02 2010
Continued fraction expansion of (2 + sqrt(6))/4. - Klaus Brockhaus, Apr 02 2010
Digital root of the powers of any number congruent to 8 mod 9. - Alonso del Arte, Jan 26 2014

Examples

			0.18181818181818181818181818181818181818181...
		

References

  • Cecil Balmond, Number 9: The Search for the Sigma Code. Munich, New York: Prestel (1998): 203.

Crossrefs

Cf. A000012 (all 1's sequence), A010731 (all 8's sequence), A174925 (decimal expansion of (2 + sqrt(6))/4). [Klaus Brockhaus, Apr 02 2010]
Cf. Digital roots of powers of c mod 9: c = 2, A153130; c = 4, A100402; c = 5, A070366; c = 7, A070403.
Cf. sequences listed in Comments section of A283393.
Cf. A010888.

Programs

Formula

From Paul Barry, Sep 16 2004: (Start)
G.f.: (1 + 8*x)/((1 - x)*(1 + x)).
a(n) = (9 - 7*(-1)^n)/2.
a(n) = 8^(ceiling(n/2) - floor(n/2)).
a(n) = gcd((n-1)^3, (n+1)^3). (End)
E.g.f.: cosh(x) + 8*sinh(x). - Stefano Spezia, Feb 09 2025
a(n) = A010888(8*a(n-1)). - Stefano Spezia, Mar 20 2025

Extensions

Definition edited and keywords cons, cofr added by Klaus Brockhaus, Apr 02 2010

A070366 a(n) = 5^n mod 9.

Original entry on oeis.org

1, 5, 7, 8, 4, 2, 1, 5, 7, 8, 4, 2, 1, 5, 7, 8, 4, 2, 1, 5, 7, 8, 4, 2, 1, 5, 7, 8, 4, 2, 1, 5, 7, 8, 4, 2, 1, 5, 7, 8, 4, 2, 1, 5, 7, 8, 4, 2, 1, 5, 7, 8, 4, 2, 1, 5, 7, 8, 4, 2, 1, 5, 7, 8, 4, 2, 1, 5, 7, 8, 4, 2, 1, 5, 7, 8, 4, 2, 1, 5, 7, 8, 4, 2, 1, 5, 7, 8, 4, 2, 1, 5, 7, 8, 4, 2, 1, 5, 7, 8, 4, 2, 1, 5, 7
Offset: 0

Views

Author

N. J. A. Sloane, May 12 2002

Keywords

Comments

Period 6: repeat [1, 5, 7, 8, 4, 2].
Also the digital root of 5^n. - Cino Hilliard, Dec 31 2004
Digital root of the powers of any number congruent to 5 mod 9. - Alonso del Arte, Jan 26 2014

References

  • Cecil Balmond, Number 9: The Search for the Sigma Code. Munich, New York: Prestel (1998): 203.

Crossrefs

Cf. Digital roots of powers of c mod 9: c = 2, A153130; c = 4, A100402; c = 7, A070403; c = 8, A010689.

Programs

Formula

From R. J. Mathar, Apr 20 2010: (Start)
a(n) = a(n-1) - a(n-3) + a(n-4) for n>3.
G.f.: ( 1+4*x+2*x^2+2*x^3 ) / ( (1-x)*(1+x)*(x^2-x+1) ). (End)
a(n) = 1/2^n (mod 9), n >= 0. - Wolfdieter Lang, Feb 18 2014
a(n) = A010878(A000351(n)). - Michel Marcus, Feb 20 2014
From G. C. Greubel, Mar 05 2016: (Start)
a(n) = a(n-6) for n>5.
E.g.f.: (1/2)*(9*exp(x) - exp(-x) + 2*sqrt(3)*exp(x/2)*sin(sqrt(3)*x/2) - 6*exp(x/2)*cos(sqrt(3)*x/2)). (End)
a(n) = (9 - cos(n*Pi) - 6*cos(n*Pi/3) + 2*sqrt(3)*sin(n*Pi/3))/2. - Wesley Ivan Hurt, Jun 28 2016
a(n) = 2^((-n) mod 6) mod 9. - Joe Slater, Mar 23 2017
a(n) = A007953(5*a(n-1)) = A010888(5*a(n-1)). - Stefano Spezia, Mar 20 2025

A100402 Digital root of 4^n.

Original entry on oeis.org

1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7
Offset: 0

Views

Author

Cino Hilliard, Dec 31 2004

Keywords

Comments

Equals A141725 mod 9. - Paul Curtz, Sep 15 2008
Sequence is the digital root of A016777. - Odimar Fabeny, Sep 13 2010
Digital root of the powers of any number congruent to 4 mod 9. - Alonso del Arte, Jan 26 2014
Period 3: repeat [1, 4, 7]. - Wesley Ivan Hurt, Aug 26 2014
From Timothy L. Tiffin, Dec 02 2023: (Start)
The period 3 digits of this sequence are the same as those of A070403 (digital root of 7^n) but the order is different: [1, 4, 7] vs. [1, 7, 4].
The digits in this sequence appear in the decimal expansions of the following rational numbers: 49/333, 490/333, 4900/333, .... (End)

Examples

			4^2 = 16, digitalroot(16) = 7, the third entry.
		

References

  • Cecil Balmond, Number 9: The Search for the Sigma Code. Munich, New York: Prestel (1998): 203.

Crossrefs

Cf. Digital roots of powers of c mod 9: c = 2, A153130; c = 5, A070366; c = 7, A070403; c = 8, A010689.

Programs

Formula

a(n) = 4^n mod 9. - Zerinvary Lajos, Nov 25 2009
From R. J. Mathar, Apr 13 2010: (Start)
a(n) = a(n-3) for n>2.
G.f.: (1+4*x+7*x^2)/ ((1-x)*(1+x+x^2)). (End)
a(n) = A010888(A000302(n)). - Michel Marcus, Aug 25 2014
a(n) = 3*A010872(n) + 1. - Robert Israel, Aug 25 2014
a(n) = 4 - 3*cos(2*n*Pi/3) - sqrt(3)*sin(2*n*Pi/3). - Wesley Ivan Hurt, Jun 30 2016
a(n) = A153130(2n). - Timothy L. Tiffin, Dec 01 2023
a(n) = A010888(A001022(n)) = A010888(A009966(n)) = A010888(A009975(n)) = A010888(A009984(n)) = A010888(A087752(n)) = A010888(A121013(n)). - Timothy L. Tiffin, Dec 02 2023
a(n) = A010888(4*a(n-1)). - Stefano Spezia, Mar 20 2025

A156760 5*4^n-1.

Original entry on oeis.org

4, 19, 79, 319, 1279, 5119, 20479, 81919, 327679, 1310719, 5242879, 20971519, 83886079, 335544319, 1342177279, 5368709119, 21474836479, 85899345919, 343597383679, 1374389534719, 5497558138879, 21990232555519, 87960930222079, 351843720888319
Offset: 0

Views

Author

Paul Curtz, Feb 15 2009

Keywords

Comments

Second column of the array A132207, or, if this array is flattened, a(n)=A132207(A007583(n)).

Examples

			Binary.......................................Decimal
100................................................4
10011.............................................19
1001111...........................................79
100111111........................................319
10011111111.....................................1279
1001111111111...................................5119
100111111111111................................20479
10011111111111111..............................81919
1001111111111111111...........................327679
100111111111111111111........................1310719
10011111111111111111111......................5242879
1001111111111111111111111...................20971519
100111111111111111111111111.................83886079
10011111111111111111111111111..............335544319
1001111111111111111111111111111...........1342177279
... - _Philippe Deléham_, Feb 23 2014
		

Programs

Formula

a(n) mod 9 = A070403(n+2).
a(n+1) = 10*A083420(n)+9 .
a(n) = 5*A000302(n)-1.
a(n) = ( A024036(n+1)+A140529(n) )/2.
a(n) = 4a(n-1)+3, a(0)=4.
a(n) = A003947(n+1)-1 = 5*a(n-1)-4*a(n-2). G.f.: (4-x)/((1-x)(1-4x)). - R. J. Mathar, Feb 23 2009
a(n) = A198693(n) + 2^(2n+1). - Bob Selcoe, Apr 20 2015

Extensions

Edited and extended by R. J. Mathar, Feb 23 2009

A381487 Numbers which are a power of their digital root.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 81, 128, 256, 512, 729, 2401, 6561, 8192, 16384, 32768, 59049, 78125, 524288, 531441, 823543, 1048576, 2097152, 4782969, 33554432, 43046721, 67108864, 134217728, 282475249, 387420489, 1220703125, 2147483648, 3486784401, 4294967296
Offset: 1

Views

Author

Stefano Spezia, Feb 25 2025

Keywords

Examples

			a(12) = 128 is a term since 128 = 2^7 = A010888(128)^7.
		

Crossrefs

Digital root of k^n: A000012 (1), A153130 (2), A100401 (3), A100402 (4), A070366 (5), A100403 (6), A070403 (7), A010689 (8), A010734 (9).

Programs

  • Mathematica
    A010888[n_]:=n - 9*Floor[(n-1)/9]; kmax=5*10^6; a={0,1}; For[k=2, k<=kmax, k++, If[A010888[k]!=1, If[IntegerQ[Log[A010888[k],k]], AppendTo[a,k]]]]; a
  • PARI
    isok(k) = if ((k==0) || (k==1), return(1)); my(d=(k-1)%9+1); if (d>1, d^logint(k, d) == k); \\ Michel Marcus, Feb 26 2025
    
  • PARI
    lista(nn) = my(list = List()); listput(list, 0); listput(list, 1); for (n=2, 9, for (k=1, logint(nn, n), if ((n^k-1)%9+1 == n, listput(list, n^k)););); vecsort(Vec(list)); \\ Michel Marcus, Feb 27 2025

Formula

a(n) = A381491(n)^A381492(n).

A144449 a(n) = 4*(4 + 9*n^2 + 15*n).

Original entry on oeis.org

16, 112, 280, 520, 832, 1216, 1672, 2200, 2800, 3472, 4216, 5032, 5920, 6880, 7912, 9016, 10192, 11440, 12760, 14152, 15616, 17152, 18760, 20440, 22192, 24016, 25912, 27880, 29920, 32032, 34216, 36472, 38800, 41200, 43672, 46216, 48832, 51520, 54280, 57112
Offset: 0

Views

Author

Paul Curtz, Oct 06 2008

Keywords

Comments

A decimation: A061039(6n+5).
a(n) mod 9 = period 3: repeat 7,4,1 = A070403(n+1).

Crossrefs

Subsequence of A008590.

Programs

  • Magma
    [36*n^2 + 60*n + 16: n in [0..40]]; // Vincenzo Librandi, Aug 07 2011
    
  • Mathematica
    Table[36n^2+60n+16,{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{16,112,280},40] (* Harvey P. Dale, Apr 04 2020 *)
  • PARI
    a(n)=36*n^2+60*n+16 \\ Charles R Greathouse IV, Jun 17 2017
    
  • Sage
    [(6*n+5)^2 - 9 for n in (0..40)] # G. C. Greubel, Mar 06 2022

Formula

a(n) = a(n-1) + 24*(3*n+1) = a(n-1) + 72*n + 24, a(0)=16.
A061039(6n+2) = A061039(6n-4) + 24*(3n+1) = a(6n-4) + 72*n + 24, a(2)=16.
From G. C. Greubel, Mar 06 2022: (Start)
G.f.: 8*(2 + 8*x - x^2)/(1-x)^3.
E.g.f.: 4*(4 + 24*x + 9*x^2)*exp(x). (End)
From Amiram Eldar, Mar 11 2022: (Start)
Sum_{n>=0} 1/a(n) = 1/12.
Sum_{n>=0} (-1)^n/a(n) = Pi/(18*sqrt(3)) + log(2)/18 - 1/12. (End)

Extensions

Edited by Charles R Greathouse IV, Jul 25 2010

A070517 a(n) = n^4 mod 13.

Original entry on oeis.org

0, 1, 3, 3, 9, 1, 9, 9, 1, 9, 3, 3, 1, 0, 1, 3, 3, 9, 1, 9, 9, 1, 9, 3, 3, 1, 0, 1, 3, 3, 9, 1, 9, 9, 1, 9, 3, 3, 1, 0, 1, 3, 3, 9, 1, 9, 9, 1, 9, 3, 3, 1, 0, 1, 3, 3, 9, 1, 9, 9, 1, 9, 3, 3, 1, 0, 1, 3, 3, 9, 1, 9, 9, 1, 9, 3, 3, 1, 0, 1, 3, 3, 9, 1, 9, 9, 1, 9, 3, 3, 1, 0, 1, 3, 3, 9, 1, 9, 9, 1, 9
Offset: 0

Views

Author

N. J. A. Sloane, May 13 2002

Keywords

Comments

Equivalently: n^(12*m + 4) mod 13. - G. C. Greubel, Apr 01 2016

Programs

Formula

From G. C. Greubel, Apr 01 2016: (Start)
a(n+13) = a(n).
a(13*m) = 0.
G.f.: (x +3*x^2 +3*x^3 +9*x^4 +x^5 +9*x^6 +9*x^7 +x^8 +9*x^9 +3*x^10 +3*x^11 +x^12)/(1 - x^13). (End)
Showing 1-8 of 8 results.