A198693
a(n) = 3*4^n-1.
Original entry on oeis.org
2, 11, 47, 191, 767, 3071, 12287, 49151, 196607, 786431, 3145727, 12582911, 50331647, 201326591, 805306367, 3221225471, 12884901887, 51539607551, 206158430207, 824633720831, 3298534883327, 13194139533311, 52776558133247
Offset: 0
-
[3*4^n-1: n in [0..30]]
-
3*4^Range[0,30]-1 (* or *) LinearRecurrence[{5,-4},{2,11},30] (* Harvey P. Dale, Jul 04 2017 *)
A259663
Square array T(n,k) read by antidiagonals upwards: "Dropping Times" in reduced Collatz sequences. (See "Comments" for definitions and explanation.)
Original entry on oeis.org
1, 13, 11, 5, 19, 7, 53, 3, 55, 47, 21, 35, 87, 79, 31, 213, 99, 23, 143, 223, 191, 85, 483, 407, 15, 95, 319, 127, 853, 739, 663, 271, 351, 63, 895, 767, 341, 1251, 1175, 1807, 863, 1599, 1407, 1279, 511
Offset: 2
Array starts T(2,1):
n\k 1 2 3 4 5 6 7 8 9 ...
2: 1 11 7 47 31 191 127 767 511
3: 13 19 55 79 223 319 895 1279 3583
4: 5 3 87 143 95 63 1407 2303 1535
5: 53 35 23 15 351 1599 2431 4351 13823
6: 21 99 407 271 863 575 383 255 22015
7: 213 483 663 1807 3935 2623 12671 8447 5631
8: 85 739 1175 783 5983 14911 20863 57599 38399
9: 853 1251 2199 6927 10079 6719 4479 90367 235007
10: 341 227 151 11023 18271 55871 37247 24831 366079
For n >= 4: e.g., n=4, so j == 2 (mod 4). Select j=6, i=2 to find T(4,4). T(4,6) = 2^6 - 1 = 63. 2^(6-2)*3^2 - 1 mod 2^(4+6-2) = 143 mod 256 = T(4,4) = 143. Now instead select j=10, i=6 to find T(4,4). T(4,10) = 2^10 - 1 = 1023. 2^(10-6)*3^6 - 1 mod 2^(4+10-6) = 11663 mod 256 = 143. - _Bob Selcoe_, Jul 15 2017
-
T(n, k) = if (n==2, if (k%2, 2^k-1, 3*2^k-1), if (n==3, if (k%2, 7*2^k-1, 5*2^k-1), mj = 2^(n-3) % 2^(n-2); mk = k % 2^(n-2); (2^k*3^(mj-mk) - 1) % 2^(n+k)));
tabl(nn) = matrix(nn, nn, n, k, T(n+1,k)); \\ Michel Marcus, Jul 10 2018
A114569
a(n) = 9*4^n - 1.
Original entry on oeis.org
8, 35, 143, 575, 2303, 9215, 36863, 147455, 589823, 2359295, 9437183, 37748735, 150994943, 603979775, 2415919103, 9663676415, 38654705663, 154618822655, 618475290623, 2473901162495, 9895604649983, 39582418599935, 158329674399743, 633318697598975, 2533274790395903
Offset: 0
Al Hakanson (hawkuu(AT)excite.com), Feb 16 2006
A198694
a(n) = 7*4^n-1.
Original entry on oeis.org
6, 27, 111, 447, 1791, 7167, 28671, 114687, 458751, 1835007, 7340031, 29360127, 117440511, 469762047, 1879048191, 7516192767, 30064771071, 120259084287, 481036337151, 1924145348607, 7696581394431, 30786325577727, 123145302310911, 492581209243647, 1970324836974591
Offset: 0
-
[7*4^n-1: n in [0..30]]
-
7*4^Range[0,30]-1 (* or *) LinearRecurrence[{5,-4},{6,27},30] (* Harvey P. Dale, Nov 14 2018 *)
A198695
a(n) = 11*4^n - 1.
Original entry on oeis.org
10, 43, 175, 703, 2815, 11263, 45055, 180223, 720895, 2883583, 11534335, 46137343, 184549375, 738197503, 2952790015, 11811160063, 47244640255, 188978561023, 755914244095, 3023656976383, 12094627905535, 48378511622143, 193514046488575, 774056185954303, 3096224743817215
Offset: 0
-
[11*4^n-1: n in [0..30]];
-
11*4^Range[0,30]-1 (* or *) NestList[4#+3&,10,30] (* or *) LinearRecurrence[ {5,-4},{10,43},30] (* Harvey P. Dale, Aug 07 2021 *)
Showing 1-5 of 5 results.
Comments