Original entry on oeis.org
4, 19, 79, 319, 1279, 5119, 20479, 81919, 327679, 1310719, 5242879, 20971519, 83886079, 335544319, 1342177279, 5368709119, 21474836479, 85899345919, 343597383679, 1374389534719, 5497558138879, 21990232555519, 87960930222079, 351843720888319
Offset: 0
Binary.......................................Decimal
100................................................4
10011.............................................19
1001111...........................................79
100111111........................................319
10011111111.....................................1279
1001111111111...................................5119
100111111111111................................20479
10011111111111111..............................81919
1001111111111111111...........................327679
100111111111111111111........................1310719
10011111111111111111111......................5242879
1001111111111111111111111...................20971519
100111111111111111111111111.................83886079
10011111111111111111111111111..............335544319
1001111111111111111111111111111...........1342177279
... - _Philippe Deléham_, Feb 23 2014
A259663
Square array T(n,k) read by antidiagonals upwards: "Dropping Times" in reduced Collatz sequences. (See "Comments" for definitions and explanation.)
Original entry on oeis.org
1, 13, 11, 5, 19, 7, 53, 3, 55, 47, 21, 35, 87, 79, 31, 213, 99, 23, 143, 223, 191, 85, 483, 407, 15, 95, 319, 127, 853, 739, 663, 271, 351, 63, 895, 767, 341, 1251, 1175, 1807, 863, 1599, 1407, 1279, 511
Offset: 2
Array starts T(2,1):
n\k 1 2 3 4 5 6 7 8 9 ...
2: 1 11 7 47 31 191 127 767 511
3: 13 19 55 79 223 319 895 1279 3583
4: 5 3 87 143 95 63 1407 2303 1535
5: 53 35 23 15 351 1599 2431 4351 13823
6: 21 99 407 271 863 575 383 255 22015
7: 213 483 663 1807 3935 2623 12671 8447 5631
8: 85 739 1175 783 5983 14911 20863 57599 38399
9: 853 1251 2199 6927 10079 6719 4479 90367 235007
10: 341 227 151 11023 18271 55871 37247 24831 366079
For n >= 4: e.g., n=4, so j == 2 (mod 4). Select j=6, i=2 to find T(4,4). T(4,6) = 2^6 - 1 = 63. 2^(6-2)*3^2 - 1 mod 2^(4+6-2) = 143 mod 256 = T(4,4) = 143. Now instead select j=10, i=6 to find T(4,4). T(4,10) = 2^10 - 1 = 1023. 2^(10-6)*3^6 - 1 mod 2^(4+10-6) = 11663 mod 256 = 143. - _Bob Selcoe_, Jul 15 2017
-
T(n, k) = if (n==2, if (k%2, 2^k-1, 3*2^k-1), if (n==3, if (k%2, 7*2^k-1, 5*2^k-1), mj = 2^(n-3) % 2^(n-2); mk = k % 2^(n-2); (2^k*3^(mj-mk) - 1) % 2^(n+k)));
tabl(nn) = matrix(nn, nn, n, k, T(n+1,k)); \\ Michel Marcus, Jul 10 2018
A267614
Decimal representation of the n-th iteration of the "Rule 185" elementary cellular automaton starting with a single ON (black) cell.
Original entry on oeis.org
1, 1, 11, 47, 191, 767, 3071, 12287, 49151, 196607, 786431, 3145727, 12582911, 50331647, 201326591, 805306367, 3221225471, 12884901887, 51539607551, 206158430207, 824633720831, 3298534883327, 13194139533311, 52776558133247, 211106232532991, 844424930131967
Offset: 0
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
-
rule=185; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]],2],{k,1,rows}] (* Decimal Representation of Rows *)
A181358
Number of twiddle factors in the first stage of a Pease Radix 4 Fast Fourier Transform.
Original entry on oeis.org
8, 44, 188, 764, 3068, 12284, 49148, 196604, 786428, 3145724, 12582908, 50331644, 201326588, 805306364, 3221225468, 12884901884, 51539607548, 206158430204, 824633720828, 3298534883324, 13194139533308, 52776558133244, 211106232532988, 844424930131964
Offset: 0
Robert Koutsoyannis (bob.koutsoyannis(AT)gmail.com), Oct 14 2010
A281500
Reduced denominators of f(n) = (n+1)/(2^(2+n)-2) with A026741(n+1) as numerators.
Original entry on oeis.org
2, 3, 14, 15, 62, 63, 254, 255, 1022, 1023, 4094, 4095, 16382, 16383, 65534, 65535, 262142, 262143, 1048574, 1048575, 4194302, 4194303, 16777214, 16777215, 67108862, 67108863, 268435454, 268435455, 1073741822, 1073741823, 4294967294, 4294967295, 17179869182, 17179869183
Offset: 0
Cf.
A000027,
A000918,
A001477,
A006519,
A026741,
A027642,
A096045,
A111701,
A117856,
A164555,
A198631,
A198693,
A209308,
A267921.
-
a[n_] := (3+(-1)^n)*(2^(n+1)-1)/2; (* or *) a[n_] := If[EvenQ[n], 4^(n/2+1)-2, 4^((n+1)/2)-1]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jan 24 2017 *)
-
Vec((2 + 3*x + 4*x^2) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 + 2*x)) + O(x^50)) \\ Colin Barker, Jan 24 2017
A303611
a(n) = (-1 - (-2)^(n-2)) mod 2^n.
Original entry on oeis.org
2, 1, 11, 7, 47, 31, 191, 127, 767, 511, 3071, 2047, 12287, 8191, 49151, 32767, 196607, 131071, 786431, 524287, 3145727, 2097151, 12582911, 8388607, 50331647, 33554431, 201326591, 134217727, 805306367, 536870911, 3221225471, 2147483647, 12884901887, 8589934591
Offset: 2
-
[IsOdd(n) select 2^(n-2)-1 else 3*2^(n-2)-1: n in [2..40]];
-
I:=[2,1,11]; [n le 3 select I[n] else Self(n-1)+4*Self(n-2)-4*Self(n-3): n in [1..35]];
-
Table[If[OddQ[n], 2^(n - 2) - 1, 3 2^(n - 2) - 1], {n, 2, 80}]
LinearRecurrence[{1, 4, -4}, {2, 1, 11}, 30]
-
a(n) = if (n%2, 2^(n-2) - 1, 3*2^(n-2) - 1); \\ Michel Marcus, May 30 2018
Showing 1-6 of 6 results.
Comments