A130497 Repetition of odd numbers five times.
1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 7, 7, 7, 7, 7, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11, 13, 13, 13, 13, 13, 15, 15, 15, 15, 15, 17, 17, 17, 17, 17, 19, 19, 19, 19, 19, 21, 21, 21, 21, 21, 23, 23, 23, 23, 23, 25, 25, 25, 25, 25, 27, 27, 27, 27, 27, 29, 29, 29, 29, 29, 31, 31, 31
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1,-1).
Programs
-
GAP
a:=[1,1,1,1,1,3];; for n in [7..80] do a[n]:=a[n-1]+a[n-5]-a[n-6]; od; a; # G. C. Greubel, Sep 12 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 80); Coefficients(R!( (1+x^5)/((1-x)*(1-x^5)) )); // G. C. Greubel, Sep 12 2019 -
Maple
P:=proc(q) local k,n; k:=[]; for n from 0 to q do k:=[op(k),2*floor(n/5)+1]; od; op(k); end: P(77);
-
Mathematica
Flatten[Table[#,{5}]&/@Range[1,31,2]] (* Harvey P. Dale, Mar 27 2013~ *)
-
PARI
my(x='x+O('x^80)); Vec((1+x^5)/((1-x)*(1-x^5))) \\ G. C. Greubel, Sep 12 2019
-
Sage
def A130497_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P((1+x^5)/((1-x)*(1-x^5))).list() A130497_list(80) # G. C. Greubel, Sep 12 2019
Formula
From R. J. Mathar, Mar 17 2010: (Start)
a(n) = a(n-1) + a(n-5) - a(n-6).
G.f.: (1+x)*(1-x+x^2-x^3+x^4)/((1+x+x^2+x^3+x^4) * (1-x)^2 ). (End)
a(n) = 2*floor(n/5)+1 = A130496(n)+1. - Tani Akinari, Jul 24 2013