cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A332621 a(n) = (1/n) * Sum_{k=1..n} n^(n/gcd(n, k)).

Original entry on oeis.org

1, 3, 19, 133, 2501, 15631, 705895, 8389641, 258280489, 4000040011, 259374246011, 2972033984173, 279577021469773, 4762288684702095, 233543408203327951, 9223372037928525841, 778579070010669895697, 13115469358498302735067, 1874292305362402347591139
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 17 2020

Keywords

Crossrefs

Programs

  • Magma
    [(1/n)*&+[n^(n div Gcd(n,k)):k in [1..n]]:n in [1..20]]; // Marius A. Burtea, Feb 17 2020
    
  • Mathematica
    Table[(1/n) Sum[n^(n/GCD[n, k]), {k, 1, n}], {n, 1, 19}]
    Table[(1/n) Sum[EulerPhi[d] n^d, {d, Divisors[n]}], {n, 1, 19}]
    Table[SeriesCoefficient[Sum[Sum[EulerPhi[j] n^(j - 1) x^(k j), {j, 1, n}], {k, 1, n}], {x, 0, n}], {n, 1, 19}]
  • PARI
    a(n) = sum(k=1, n, n^(n/gcd(n, k)))/n; \\ Michel Marcus, Mar 10 2021

Formula

a(n) = [x^n] Sum_{k>=1} Sum_{j>=1} phi(j) * n^(j-1) * x^(k*j).
a(n) = (1/n) * Sum_{k=1..n} n^(lcm(n, k)/k).
a(n) = (1/n) * Sum_{d|n} phi(d) * n^d.
a(n) = A332620(n) / n.

A130585 A054522 * A007318.

Original entry on oeis.org

1, 2, 1, 3, 4, 2, 4, 7, 6, 2, 5, 16, 24, 16, 4, 6, 15, 22, 20, 10, 2, 7, 36, 90, 120, 90, 36, 6, 8, 35, 90, 142, 140, 84, 28, 4, 9, 52, 170, 336, 420, 336, 168, 48, 6, 10, 53, 168, 352, 508, 504, 336, 144, 36, 4
Offset: 0

Views

Author

Gary W. Adamson, Jun 06 2007

Keywords

Comments

A130584 = A007318 * A054522 Row sums = A130586: (1, 3, 9, 19, 65, 75, 385, ...).

Examples

			First few rows of the triangle:
  1;
  2,  1;
  3,  4,  2;
  4,  7,  6,   2;
  5, 16, 24,  16,  4;
  6, 15, 22,  20, 10,  2;
  7, 36, 90, 120, 90, 36, 6;
  ...
		

Crossrefs

Formula

A054522 * A007318 as infinite lower triangular matrices.

A338647 a(n) = Sum_{k=1..n} 2^(k/gcd(n,k) - 1).

Original entry on oeis.org

1, 2, 4, 7, 16, 22, 64, 92, 223, 342, 1024, 1132, 4096, 5462, 13534, 21937, 65536, 70978, 262144, 333472, 890590, 1398102, 4194304, 4528402, 16236031, 22369622, 57522106, 88435312, 268435456, 272976502, 1073741824, 1431677702, 3679303390, 5726623062, 16490405374, 18543422953
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 22 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[2^(k/GCD[n, k] - 1), {k, 1, n}], {n, 1, 36}]
  • PARI
    a(n) = sum(k=1, n, 2^(k/gcd(n,k) - 1)); \\ Michel Marcus, Apr 22 2021

Formula

a(n) = Sum_{d|n} A054432(d).
Showing 1-3 of 3 results.