A130609 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+223)^2 = y^2.
0, 32, 533, 669, 833, 3672, 4460, 5412, 21945, 26537, 32085, 128444, 155208, 187544, 749165, 905157, 1093625, 4366992, 5276180, 6374652, 25453233, 30752369, 37154733, 148352852, 179238480, 216554192, 864664325, 1044678957, 1262170865, 5039633544, 6088835708
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,6,-6,0,-1,1).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{1,0,6,-6,0,-1,1}, {0,32,533,669,833,3672,4460}, 70] (* Vladimir Joseph Stephan Orlovsky, Feb 10 2012 *)
-
PARI
{forstep(n=0, 100000000, [1, 3], if(issquare(2*n^2+446*n+49729), print1(n, ",")))}
Formula
a(n) = 6*a(n-3)-a(n-6)+446 for n > 6; a(1)=0, a(2)=32, a(3)=533, a(4)=669, a(5)=833, a(6)=3672.
G.f.: x*(32+501*x+136*x^2-28*x^3-167*x^4-28*x^5)/((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 223*A001652(k) for k >= 0.
Extensions
Edited and two terms added by Klaus Brockhaus, Apr 30 2009
Comments