cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130609 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+223)^2 = y^2.

Original entry on oeis.org

0, 32, 533, 669, 833, 3672, 4460, 5412, 21945, 26537, 32085, 128444, 155208, 187544, 749165, 905157, 1093625, 4366992, 5276180, 6374652, 25453233, 30752369, 37154733, 148352852, 179238480, 216554192, 864664325, 1044678957, 1262170865, 5039633544, 6088835708
Offset: 1

Views

Author

Mohamed Bouhamida, Jun 17 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+223, y).
Corresponding values y of solutions (x, y) are in A159809.
For the generic case x^2+(x+p)^2 = y^2 with p = m^2-2 a (prime) number > 7 in A028871, see A118337.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (227+30*sqrt(2))/223 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (105507+65798*sqrt(2))/223^2 for n mod 3 = 0.

Crossrefs

Cf. A159809, A028871, A118337, A118675, A118676, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A159810 (decimal expansion of (227+30*sqrt(2))/223), A159811 (decimal expansion of (105507+65798*sqrt(2))/223^2).

Programs

  • Mathematica
    LinearRecurrence[{1,0,6,-6,0,-1,1}, {0,32,533,669,833,3672,4460}, 70]  (* Vladimir Joseph Stephan Orlovsky, Feb 10 2012 *)
  • PARI
    {forstep(n=0, 100000000, [1, 3], if(issquare(2*n^2+446*n+49729), print1(n, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6)+446 for n > 6; a(1)=0, a(2)=32, a(3)=533, a(4)=669, a(5)=833, a(6)=3672.
G.f.: x*(32+501*x+136*x^2-28*x^3-167*x^4-28*x^5)/((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 223*A001652(k) for k >= 0.

Extensions

Edited and two terms added by Klaus Brockhaus, Apr 30 2009