cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A118337 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2 + (x + 23)^2 = y^2.

Original entry on oeis.org

0, 12, 33, 69, 133, 252, 460, 832, 1525, 2737, 4905, 8944, 16008, 28644, 52185, 93357, 167005, 304212, 544180, 973432, 1773133, 3171769, 5673633, 10334632, 18486480, 33068412, 60234705, 107747157, 192736885, 351073644, 627996508, 1123352944, 2046207205
Offset: 1

Views

Author

Mohamed Bouhamida, May 14 2006

Keywords

Comments

Also values x of Pythagorean triples (x, x+23, y).
Corresponding values y of solutions (x, y) are in A156567.
For the generic case x^2 + (x + p)^2 = y^2 with p = m^2 - 2 a (prime) number in A028871, m>=5, the x values are given by the sequence defined by a(n) = 6*a(n-3) - a(n-6) + 2p with a(1)=0, a(2) = 2m + 2, a(3) = 3*m^2 - 10m + 8, a(4)=3p, a(5) = 3*m^2 + 10m + 8, a(6) = 20*m^2 - 58m + 42. Pairs (p, m) are (23, 5), (47, 7), (79, 9), (167, 13), (223, 15), (359, 19), (439, 21), (727, 27), (839, 29), ...
Limit_{n -> oo} a(n)/a(n-3) = 3 + 2*sqrt(2).
Limit_{n -> oo} a(n)/a(n-1) = (27 + 10*sqrt(2))/23 for n mod 3 = {1, 2}.
Limit_{n -> oo} a(n)/a(n-1) = (3 + 2*sqrt(2))/((27 + 10*sqrt(2))/23)^2 for n mod 3 = 0.
For the generic case x^2 + (x + p)^2=y^2 with p = m^2 - 2 a prime number in A028871, m>=5, Y values are given by the sequence defined by b(n) = 6*b(n-3) - b(n-6) with b(1) = p, b(2) = m^2 + 2m + 2, b(3) = 5m^2 - 14m + 10, b(4) = 5p, b(5) = 5m^2 + 14m + 10, b(6) = 29m^2 - 82m + 58. - Mohamed Bouhamida, Sep 09 2009
For the generic case x^2 + (x + p)^2 = y^2 with p = m^2 - 2 a prime number, m>=5, the first three consecutive solutions are: (0;p), (2m+2; m^2+2m+2), (3*m^2-10m+8; 5*m^2-14m+10) and the other solutions are defined by: (X(n); Y(n))= (3*X(n-3)+2*Y(n-3)+p; 4*X(n-3)+3*Y(n-3)+2p). - Mohamed Bouhamida, Aug 19 2019
X(n) = 6*X(n-3) - X(n-6) + 2*p, and Y(n) = 6*Y(n-3) - Y(n-6) (can be easily proved using X(n) = 3*X(n-3) + 2*Y(n-3) + p, and Y(n) = 4*X(n-3) + 3*Y(n-3) + 2*p). - Mohamed Bouhamida, Aug 20 2019

Crossrefs

Cf. A156567, A028871 (primes of form n^2 - 2), A156035 (decimal expansion of 3 + 2*sqrt(2)), A156571 (decimal expansion of (27 + 10*sqrt(2))/23).
Cf. A118675 (p=47), A118676 (p=79), A130608 (p=167), A130609 (p=223), A130610 (p=359), A130645 (p=439), A130646 (p=727), A130647 (p=839).

Programs

  • Magma
    I:=[0,12,33,69,133,252,460]; [n le 7 select I[n] else Self(n-1) +6*Self(n-3) -6*Self(n-4) -Self(n-6) +Self(n-7): n in [1..30]]; // G. C. Greubel, May 04 2018
  • Mathematica
    Select[Range[0,100000],IntegerQ[Sqrt[#^2+(#+23)^2]]&] (* or *) LinearRecurrence[{1,0,6,-6,0,-1,1},{0,12,33,69,133,252,460},50] (* Vladimir Joseph Stephan Orlovsky, Feb 02 2012 *)
  • PARI
    forstep(n=0, 1124000000, [1, 3], if(issquare(2*n*(n+23)+529), print1(n, ",")))
    
  • PARI
    x='x+O('x^30); concat([0], Vec(x*(12+21*x+36*x^2-8*x^3-7*x^4-8*x^5)/((1-x)*(1-6*x^3+x^6)))) \\ G. C. Greubel, May 04 2018
    

Formula

a(n) = 6*a(n-3) - a(n-6) + 46 for n > 6; a(1)=0, a(2)=12, a(3)=33, a(4)=69, a(5)=133, a(6)=252.
G.f.: x*(12 + 21*x + 36*x^2 - 8*x^3 - 7*x^4 - 8*x^5)/((1-x)*(1 - 6*x^3 + x^6)).

Extensions

Edited by Klaus Brockhaus, Feb 10 2009

A130610 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+359)^2 = y^2.

Original entry on oeis.org

0, 40, 901, 1077, 1281, 6160, 7180, 8364, 36777, 42721, 49621, 215220, 249864, 290080, 1255261, 1457181, 1691577, 7317064, 8493940, 9860100, 42647841, 49507177, 57469741, 248570700, 288549840, 334959064, 1448777077, 1681792581
Offset: 1

Views

Author

Mohamed Bouhamida, Jun 17 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+359, y).
Corresponding values y of solutions (x, y) are in A159844.
For the generic case x^2+(x+p)^2 = y^2 with p = m^2-2 a (prime) number > 7 in A028871, see A118337.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (363+38*sqrt(2))/359 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (293619+186550*sqrt(2))/359^2 for n mod 3 = 0.

Crossrefs

Cf. A159844, A028871, A118337, A130609, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A159845 (decimal expansion of (363+38*sqrt(2))/359), A159846 (decimal expansion of (293619+186550*sqrt(2))/359^2).

Programs

  • PARI
    {forstep(n=0, 100000000, [1, 3], if(issquare(2*n^2+718*n+128881), print1(n, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6)+718 for n > 6; a(1)=0, a(2)=40, a(3)=901, a(4)=1077, a(5)=1281, a(6)=6160.
G.f.: x*(40+861*x+176*x^2-36*x^3-287*x^4-36*x^5) / ((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 359*A001652(k) for k >= 0.

Extensions

Edited and two terms added by Klaus Brockhaus, Apr 30 2009

A159809 Positive numbers y such that y^2 is of the form x^2+(x+223)^2 with integer x.

Original entry on oeis.org

197, 223, 257, 925, 1115, 1345, 5353, 6467, 7813, 31193, 37687, 45533, 181805, 219655, 265385, 1059637, 1280243, 1546777, 6176017, 7461803, 9015277, 35996465, 43490575, 52544885, 209802773, 253481647, 306254033, 1222820173, 1477399307
Offset: 1

Views

Author

Klaus Brockhaus, Apr 30 2009

Keywords

Comments

(-28, a(1)) and (A130609(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+223)^2 = y^2.
Lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
Lim_{n -> infinity} a(n)/a(n-1) = (227+30*sqrt(2))/223 for n mod 3 = {0, 2}.
Lim_{n -> infinity} a(n)/a(n-1) = (105507+65798*sqrt(2))/223^2 for n mod 3 = 1.
For the generic case x^2 + (x+p)^2 = y^2 with p = m^2 - 2 a prime number in A028871, m >= 5, the x values are given by the sequence defined by a(n) = 6*a(n-3) - a(n-6) + 2*p with a(1)=0, a(2) = 2*m + 2, a(3) = 3*m^2 - 10*m + 8, a(4) = 3*p, a(5) = 3*m^2 + 10*m + 8, a(6) = 20*m^2 - 58*m + 42. Y values are given by the sequence defined by b(n) = 6*b(n-3) - b(n-6) with b(1) = p, b(2) = m^2 + 2*m + 2, b(3) = 5*m^2 - 14*m + 10, b(4) = 5*p, b(5) = 5m^2 + 14*m + 10, b(6) = 29*m^2 - 82*m + 58. - Mohamed Bouhamida, Sep 09 2009

Examples

			(-28, a(1)) = (-28, 197) is a solution: (-28)^2 + (-28+223)^2 = 784 + 38025 = 38809 = 197^2.
(A130609(1), a(2)) = (0, 223) is a solution: 0^2 + (0+223)^2 = 49729 = 223^2.
(A130609(3), a(4)) = (533, 925) is a solution: 533^2 + (533+223)^2 = 284089 + 571536 = 855625 = 925^2.
		

Crossrefs

Cf. A130609, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A130610 (decimal expansion of (227+30*sqrt(2))/223), A130611 (decimal expansion of (105507+65798*sqrt(2))/223^2).

Programs

  • Magma
    I:=[197,223,257,925,1115,1345]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..30]]; // G. C. Greubel, May 21 2018
  • Mathematica
    LinearRecurrence[{0,0,6,0,0,-1}, {197,223,257,925,1115,1345}, 50] (* G. C. Greubel, May 21 2018 *)
  • PARI
    {forstep(n=-28, 10000000, [1, 3], if(issquare(2*n^2+446*n+49729, &k), print1(k, ",")))};
    

Formula

a(n) = 6*a(n-3) - a(n-6) for n > 6; a(1)=197, a(2)=223, a(3)=257, a(4)=925, a(5)=1115, a(6)=1345.
G.f.: (1-x)*(197+420*x+677*x^2+420*x^3+197*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 223*A001653(k) for k >= 1.

A159810 Decimal expansion of (227+30*sqrt(2))/223.

Original entry on oeis.org

1, 2, 0, 8, 1, 9, 0, 1, 6, 5, 3, 4, 1, 6, 7, 1, 9, 7, 9, 6, 5, 9, 4, 2, 0, 0, 0, 7, 7, 4, 1, 2, 1, 4, 9, 8, 8, 1, 4, 8, 3, 8, 6, 3, 5, 0, 9, 4, 7, 5, 7, 1, 4, 8, 9, 6, 6, 5, 0, 2, 4, 1, 7, 9, 9, 9, 8, 7, 5, 3, 2, 4, 8, 2, 2, 3, 6, 0, 1, 8, 4, 3, 7, 9, 1, 5, 3, 1, 9, 5, 5, 2, 9, 0, 7, 1, 4, 1, 1, 2, 9, 2, 3, 9, 9
Offset: 1

Views

Author

Klaus Brockhaus, Apr 30 2009

Keywords

Comments

Equals lim_{n -> infinity} b(n)/b(n-1) for n mod 3 = {1, 2}, b = A130609.
Equals lim_{n -> infinity} b(n)/b(n-1) for n mod 3 = {0, 2}, b = A159809.

Examples

			(227+30*sqrt(2))/223 = 1.20819016534167197965...
		

Crossrefs

Cf. A130609, A159809, A002193 (decimal expansion of sqrt(2)), A159811 (decimal expansion of (105507+65798*sqrt(2))/223^2).

Programs

  • Magma
    (227 +30*Sqrt(2))/223; // G. C. Greubel, May 19 2018
  • Mathematica
    RealDigits[(227+30*Sqrt[2])/223,10,120][[1]] (* Harvey P. Dale, Sep 10 2017 *)
  • PARI
    (227 +30*sqrt(2))/223 \\ G. C. Greubel, May 19 2018
    

Formula

Equals (15 +sqrt(2))/(15 -sqrt(2)).

A159811 Decimal expansion of (105507 + 65798*sqrt(2))/223^2.

Original entry on oeis.org

3, 9, 9, 2, 8, 2, 9, 6, 1, 6, 0, 5, 9, 5, 4, 0, 8, 7, 1, 9, 4, 7, 0, 2, 3, 1, 5, 9, 0, 3, 2, 9, 5, 2, 8, 8, 8, 1, 2, 8, 2, 0, 0, 2, 4, 6, 4, 5, 6, 8, 4, 4, 6, 8, 4, 5, 6, 7, 9, 4, 1, 7, 1, 2, 0, 8, 5, 7, 8, 9, 2, 9, 0, 3, 1, 0, 4, 7, 7, 1, 6, 5, 0, 8, 0, 2, 9, 1, 1, 5, 7, 7, 4, 8, 8, 0, 1, 7, 0, 9, 3, 2, 0, 8, 8
Offset: 1

Views

Author

Klaus Brockhaus, Apr 30 2009

Keywords

Comments

Equals lim_{n -> infinity} b(n)/b(n-1) for n mod 3 = 0, b = A130609.
Equals lim_{n -> infinity} b(n)/b(n-1) for n mod 3 = 1, b = A159809.

Examples

			(105507+65798*sqrt(2))/223^2 = 3.99282961605954087194...
		

Crossrefs

Cf. A130609, A159809, A002193 (decimal expansion of sqrt(2)), A159810 (decimal expansion of (227+30*sqrt(2))/223).

Programs

  • Magma
    (105507+65798*Sqrt(2))/223^2; // G. C. Greubel, May 19 2018
  • Mathematica
    RealDigits[(105507 + 65798*Sqrt[2])/223^2, 10, 100][[1]] (* G. C. Greubel, May 19 2018 *)
  • PARI
    (105507+65798*sqrt(2))/223^2 \\ G. C. Greubel, May 19 2018
    

Formula

Equals (394 + 167*sqrt(2))/(394 - 167*sqrt(2)).
Equals (3 + 2*sqrt(2))*(15 - sqrt(2))^2/(15 + sqrt(2))^2.

A201916 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+2737)^2 = y^2.

Original entry on oeis.org

0, 75, 203, 323, 552, 708, 1020, 1127, 1311, 1428, 1608, 1820, 1955, 2336, 2675, 3128, 3311, 3627, 3927, 4140, 4508, 4743, 5535, 6003, 6800, 7280, 7848, 8211, 8588, 9240, 9860, 11063, 11895, 13583, 14168, 15180, 15827, 16827, 18011, 18768, 20915, 22836
Offset: 1

Views

Author

T. D. Noe, Feb 09 2012

Keywords

Comments

Note that 2737 = 7 * 17 * 23, the product of the first three distinct primes in A058529 (and A001132) and hence the smallest such number. This sequence satisfies a linear difference equation of order 55 whose 55 initial terms can be found by running the Mathematica program.
There are many sequences like this one. What determines the order of the linear difference equation? All primes p have order 7. For those p, it appears that p^2 has order 11, p^3 order 15, and p^i order 3+4*i. It appears that for semiprimes p*q (with p > q), the order is 19. What is the next term of the sequence beginning 3, 7, 19, 55, 163? This could be sequence A052919, which is 1 + 2*3^f, where f is the number of primes.
The crossref list is thought to be complete up to Feb 14 2012.

Crossrefs

Cf. A001652 (1), A076296 (7), A118120 (17), A118337 (23), A118674 (31).
Cf. A129288 (41), A118675 (47), A118554 (49), A118673 (71), A129289 (73).
Cf. A118676 (79), A129298 (89), A129836 (97), A157119 (103), A161478 (113).
Cf. A129837 (119), A129992 (127), A129544 (137), A161482 (151).
Cf. A206426 (161), A130608 (167), A161486 (191), A185394 (193).
Cf. A129993 (199), A198294 (217), A130609 (223), A129625 (233).
Cf. A204765 (239), A129991 (241), A207058 (263), A129626 (281).
Cf. A205644 (287), A207059 (289), A129640 (313), A205672 (329).
Cf. A129999 (337), A118611 (343), A130610 (359), A207060 (401).
Cf. A129641 (409), A207061 (433), A130645 (439), A130004 (449).
Cf. A129642 (457), A129725 (521), A101152 (569), A130005 (577).
Cf. A207075 (479), A207076 (487), A207077 (497), A207078 (511).
Cf. A111258 (601), A115135 (617), A130013 (647), A130646 (727).
Cf. A122694 (761), A123654 (809), A129010 (833), A130647 (839).
Cf. A129857 (857), A130014 (881), A129974 (937), A129975 (953).
Cf. A130017 (967), A118630 (2401), A118576 (16807).

Programs

  • Mathematica
    d = 2737; terms = 100; t = Select[Range[0, 55000], IntegerQ[Sqrt[#^2 + (#+d)^2]] &]; Do[AppendTo[t, t[[-1]] + 6*t[[-27]] - 6*t[[-28]] - t[[-54]] + t[[-55]]], {terms-55}]; t

Formula

a(n) = a(n-1) + 6*a(n-27) - 6*a(n-28) - a(n-54) + a(n-55), where the 55 initial terms can be computed using the Mathematica program.
G.f.: x^2*(73*x^53 +116*x^52 +100*x^51 +171*x^50 +104*x^49 +184*x^48 +57*x^47 +92*x^46 +55*x^45 +80*x^44 +88*x^43 +53*x^42 +139*x^41 +113*x^40 +139*x^39 +53*x^38 +88*x^37 +80*x^36 +55*x^35 +92*x^34 +57*x^33 +184*x^32 +104*x^31 +171*x^30 +100*x^29 +116*x^28 +73*x^27 -363*x^26 -568*x^25 -480*x^24 -797*x^23 -468*x^22 -792*x^21 -235*x^20 -368*x^19 -213*x^18 -300*x^17 -316*x^16 -183*x^15 -453*x^14 -339*x^13 -381*x^12 -135*x^11 -212*x^10 -180*x^9 -117*x^8 -184*x^7 -107*x^6 -312*x^5 -156*x^4 -229*x^3 -120*x^2 -128*x -75) / ((x -1)*(x^54 -6*x^27 +1)). - Colin Barker, May 18 2015
Showing 1-6 of 6 results.