cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A130609 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+223)^2 = y^2.

Original entry on oeis.org

0, 32, 533, 669, 833, 3672, 4460, 5412, 21945, 26537, 32085, 128444, 155208, 187544, 749165, 905157, 1093625, 4366992, 5276180, 6374652, 25453233, 30752369, 37154733, 148352852, 179238480, 216554192, 864664325, 1044678957, 1262170865, 5039633544, 6088835708
Offset: 1

Views

Author

Mohamed Bouhamida, Jun 17 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+223, y).
Corresponding values y of solutions (x, y) are in A159809.
For the generic case x^2+(x+p)^2 = y^2 with p = m^2-2 a (prime) number > 7 in A028871, see A118337.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (227+30*sqrt(2))/223 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (105507+65798*sqrt(2))/223^2 for n mod 3 = 0.

Crossrefs

Cf. A159809, A028871, A118337, A118675, A118676, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A159810 (decimal expansion of (227+30*sqrt(2))/223), A159811 (decimal expansion of (105507+65798*sqrt(2))/223^2).

Programs

  • Mathematica
    LinearRecurrence[{1,0,6,-6,0,-1,1}, {0,32,533,669,833,3672,4460}, 70]  (* Vladimir Joseph Stephan Orlovsky, Feb 10 2012 *)
  • PARI
    {forstep(n=0, 100000000, [1, 3], if(issquare(2*n^2+446*n+49729), print1(n, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6)+446 for n > 6; a(1)=0, a(2)=32, a(3)=533, a(4)=669, a(5)=833, a(6)=3672.
G.f.: x*(32+501*x+136*x^2-28*x^3-167*x^4-28*x^5)/((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 223*A001652(k) for k >= 0.

Extensions

Edited and two terms added by Klaus Brockhaus, Apr 30 2009

A159810 Decimal expansion of (227+30*sqrt(2))/223.

Original entry on oeis.org

1, 2, 0, 8, 1, 9, 0, 1, 6, 5, 3, 4, 1, 6, 7, 1, 9, 7, 9, 6, 5, 9, 4, 2, 0, 0, 0, 7, 7, 4, 1, 2, 1, 4, 9, 8, 8, 1, 4, 8, 3, 8, 6, 3, 5, 0, 9, 4, 7, 5, 7, 1, 4, 8, 9, 6, 6, 5, 0, 2, 4, 1, 7, 9, 9, 9, 8, 7, 5, 3, 2, 4, 8, 2, 2, 3, 6, 0, 1, 8, 4, 3, 7, 9, 1, 5, 3, 1, 9, 5, 5, 2, 9, 0, 7, 1, 4, 1, 1, 2, 9, 2, 3, 9, 9
Offset: 1

Views

Author

Klaus Brockhaus, Apr 30 2009

Keywords

Comments

Equals lim_{n -> infinity} b(n)/b(n-1) for n mod 3 = {1, 2}, b = A130609.
Equals lim_{n -> infinity} b(n)/b(n-1) for n mod 3 = {0, 2}, b = A159809.

Examples

			(227+30*sqrt(2))/223 = 1.20819016534167197965...
		

Crossrefs

Cf. A130609, A159809, A002193 (decimal expansion of sqrt(2)), A159811 (decimal expansion of (105507+65798*sqrt(2))/223^2).

Programs

  • Magma
    (227 +30*Sqrt(2))/223; // G. C. Greubel, May 19 2018
  • Mathematica
    RealDigits[(227+30*Sqrt[2])/223,10,120][[1]] (* Harvey P. Dale, Sep 10 2017 *)
  • PARI
    (227 +30*sqrt(2))/223 \\ G. C. Greubel, May 19 2018
    

Formula

Equals (15 +sqrt(2))/(15 -sqrt(2)).
Showing 1-2 of 2 results.