cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130614 a(n) = p^(p-2), where p = prime(n).

Original entry on oeis.org

1, 3, 125, 16807, 2357947691, 1792160394037, 2862423051509815793, 5480386857784802185939, 39471584120695485887249589623, 3053134545970524535745336759489912159909
Offset: 1

Views

Author

Jonathan Vos Post, Jun 18 2007

Keywords

Comments

Number of labeled trees on p(n) nodes, where p(n) is the n-th prime.
Let p = prime(n). For n >= 2, (-1)^((p-1)/2) * a(n) is the discriminant of the p-th cyclotomic polynomial. - Jianing Song, May 10 2021

Crossrefs

Programs

  • Magma
    [n^(n-2) : n in [2..40] | IsPrime(n)];
    
  • Magma
    [p^(p-2): p in PrimesUpTo(50)]; // Vincenzo Librandi, Mar 27 2014
    
  • Mathematica
    Table[Prime@n^(Prime@n - 2), {n, 20}] (* Vincenzo Librandi, Mar 27 2014 *)
    #^(#-2)&/@Prime[Range[10]] (* Harvey P. Dale, Oct 18 2016 *)
  • PARI
    a(n) = my(p=prime(n)); p^(p-2) \\ Felix Fröhlich, May 10 2021

Formula

a(n) = A000272(A000040(n)).
For n >= 2, (-1)^((p-1)/2) * a(n) = A004124(p), where p = prime(n). - Jianing Song, May 10 2021

Extensions

Name edited by Felix Fröhlich, May 10 2021