cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130647 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+839)^2 = y^2.

Original entry on oeis.org

0, 60, 2241, 2517, 2821, 15180, 16780, 18544, 90517, 99841, 110121, 529600, 583944, 643860, 3088761, 3405501, 3754717, 18004644, 19850740, 21886120, 104940781, 115700617, 127563681, 611641720, 674354640, 743497644, 3564911217
Offset: 1

Views

Author

Mohamed Bouhamida, Jun 20 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+839, y).
Corresponding values y of solutions (x, y) are in A159896.
For the generic case x^2+(x+p)^2 = y^2 with p = m^2-2 a (prime) number > 7 in A028871, see A118337.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (843+58*sqrt(2))/839 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (1760979+1141390*sqrt(2))/839^2 for n mod 3 = 0.

Crossrefs

Cf. A159896, A028871, A118337, A130645, A130646, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A159897 (decimal expansion of (843+58*sqrt(2))/839), A159898 (decimal expansion of (1760979+1141390*sqrt(2))/839^2).

Programs

  • Magma
    I:=[0,60,2241,2517,2821,15180,16780]; [n le 7 select I[n] else Self(n-1) +6*Self(n-3) -6*Self(n-4) -Self(n-6) +Self(n=7): n in [1..30]]; // G. C. Greubel, May 17 2018
  • Mathematica
    LinearRecurrence[{1,0,6,-6,0,-1,1},{0,60,2241,2517,2821,15180,16780},30] (* Harvey P. Dale, Jun 19 2014 *)
  • PARI
    {forstep(n=0, 100000000, [1, 3], if(issquare(2*n^2+1678*n+703921), print1(n, ",")))}
    

Formula

a(n) = 6*a(n-3) -a(n-6) +1678 for n > 6; a(1)=0, a(2)=60, a(3)=2241, a(4)=2517, a(5)=2821, a(6)=15180.
G.f.: x*(60+2181*x+276*x^2-56*x^3-727*x^4-56*x^5)/((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 839*A001652(k) for k >= 0.

Extensions

Edited and two terms added by Klaus Brockhaus, Apr 30 2009