A130647 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+839)^2 = y^2.
0, 60, 2241, 2517, 2821, 15180, 16780, 18544, 90517, 99841, 110121, 529600, 583944, 643860, 3088761, 3405501, 3754717, 18004644, 19850740, 21886120, 104940781, 115700617, 127563681, 611641720, 674354640, 743497644, 3564911217
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..3895
- Index entries for linear recurrences with constant coefficients, signature (1,0,6,-6,0,-1,1).
Crossrefs
Programs
-
Magma
I:=[0,60,2241,2517,2821,15180,16780]; [n le 7 select I[n] else Self(n-1) +6*Self(n-3) -6*Self(n-4) -Self(n-6) +Self(n=7): n in [1..30]]; // G. C. Greubel, May 17 2018
-
Mathematica
LinearRecurrence[{1,0,6,-6,0,-1,1},{0,60,2241,2517,2821,15180,16780},30] (* Harvey P. Dale, Jun 19 2014 *)
-
PARI
{forstep(n=0, 100000000, [1, 3], if(issquare(2*n^2+1678*n+703921), print1(n, ",")))}
Formula
a(n) = 6*a(n-3) -a(n-6) +1678 for n > 6; a(1)=0, a(2)=60, a(3)=2241, a(4)=2517, a(5)=2821, a(6)=15180.
G.f.: x*(60+2181*x+276*x^2-56*x^3-727*x^4-56*x^5)/((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 839*A001652(k) for k >= 0.
Extensions
Edited and two terms added by Klaus Brockhaus, Apr 30 2009
Comments