A130652 a(n) = 11^n - 2.
9, 119, 1329, 14639, 161049, 1771559, 19487169, 214358879, 2357947689, 25937424599, 285311670609, 3138428376719, 34522712143929, 379749833583239, 4177248169415649, 45949729863572159, 505447028499293769, 5559917313492231479, 61159090448414546289, 672749994932560009199
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..300
- Index entries for linear recurrences with constant coefficients, signature (12,-11).
Crossrefs
Cf. A001020, A024127, A034524. Cf. A104096 = Largest prime <= 11^n. Cf. A084714 = smallest prime of the form (2n-1)^k - 2, or 0 if no such number exists. Cf. A128472 = smallest prime of the form (2n-1)^k - 2 for k>(2n-1), or 0 if no such number exists. Cf. A014224, A109080, A090669, A128455, A128457, A128458, A128459, A128460, A128461.
Programs
-
Magma
[11^n - 2: n in [1..50]]; // Vincenzo Librandi, Jun 08 2011
-
Mathematica
LinearRecurrence[{12, -11},{9, 119},17] (* Ray Chandler, Aug 26 2015 *)
Formula
a(n) = 11*a(n-1) + 20; a(1)=9. - Vincenzo Librandi, Jun 08 2011
From Elmo R. Oliveira, Jun 16 2025: (Start)
G.f.: x*(11*x+9)/((11*x-1)*(x-1)).
E.g.f.: 1 + exp(x)*(exp(10*x) - 2).
a(n) = 12*a(n-1) - 11*a(n-2) for n > 2. (End)
Comments