A130716 a(0)=a(1)=a(2)=1, a(n)=0 for n>2.
1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Examples
G.f. = 1 + x + x^2. G.f. = 1/q + 1 + q.
Links
- Andrei Asinowski, Cyril Banderier, Valerie Roitner, Generating functions for lattice paths with several forbidden patterns, (2019).
Crossrefs
Cf. A049347.
Programs
-
Mathematica
a[ n_] := Boole[ n>=0 && n<=2]; (* Michael Somos, Oct 22 2013 *)
-
PARI
{a(n) = n>=0 && n<=2}; /* Michael Somos, Oct 22 2013 */
Formula
Given g.f. A(x), then B(a) = A(q) / q satisfies 0 = f(B(q), B(q^2)) where f(u, v) = v - u * (u - 2). - Michael Somos, Oct 22 2013
Euler transform of length 3 sequence [ 1, 0, -1]. - Michael Somos, Oct 22 2013
G.f. is third cyclotomic polynomial.
G.f.: (1 - x^3) / (1 - x).
Convolution inverse is A049347. - Michael Somos, Oct 22 2013
Comments