cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130716 a(0)=a(1)=a(2)=1, a(n)=0 for n>2.

Original entry on oeis.org

1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Paul Curtz and Tanya Khovanova, Jul 01 2007

Keywords

Comments

With different signs this sequence is the convolutional inverse of the Fibonacci sequence: 1, -1, -1, 0, 0, ... - Tanya Khovanova, Jul 14 2007
Inverse binomial transform of A000124. - R. J. Mathar, Jun 13 2008
Partial sums give A158799. [Jaroslav Krizek, Dec 06 2009]

Examples

			G.f. = 1 + x + x^2.
G.f. = 1/q + 1 + q.
		

Crossrefs

Cf. A049347.

Programs

  • Mathematica
    a[ n_] := Boole[ n>=0 && n<=2]; (* Michael Somos, Oct 22 2013 *)
  • PARI
    {a(n) = n>=0 && n<=2}; /* Michael Somos, Oct 22 2013 */

Formula

Given g.f. A(x), then B(a) = A(q) / q satisfies 0 = f(B(q), B(q^2)) where f(u, v) = v - u * (u - 2). - Michael Somos, Oct 22 2013
Euler transform of length 3 sequence [ 1, 0, -1]. - Michael Somos, Oct 22 2013
G.f. is third cyclotomic polynomial.
G.f.: (1 - x^3) / (1 - x).
Convolution inverse is A049347. - Michael Somos, Oct 22 2013