cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130752 Binomial transform of periodic sequence (2, 3, 1).

Original entry on oeis.org

2, 5, 9, 16, 31, 63, 128, 257, 513, 1024, 2047, 4095, 8192, 16385, 32769, 65536, 131071, 262143, 524288, 1048577, 2097153, 4194304, 8388607, 16777215, 33554432, 67108865, 134217729, 268435456, 536870911, 1073741823, 2147483648, 4294967297, 8589934593
Offset: 0

Views

Author

Paul Curtz, Jul 13 2007

Keywords

Comments

The second sequence of "less twisted numbers"; this sequence, A130750 and A130755 form a "suite en trio" (cf. reference, p. 130).
First differences of A130750, second differences of A130755.
Sequence equals its third differences:
2.....5.....9....16....31....63...128...257...513..1024...
...3.....4.....7....15....32....65...129...256...511...
......1.....3.....8....17....33....64...127...255...
..........2.....5.....9....16....31....63...128...

References

  • P. Curtz, Exercise Book, manuscript, 1995.

Crossrefs

Cf. A010882, A130755 (first differences), A130750 (second differences).

Programs

  • Magma
    m:=31; S:=[ [2, 3, 1][(n-1) mod 3 +1]: n in [1..m] ]; [ &+[ Binomial(i-1, k-1)*S[k]: k in [1..i] ]: i in [1..m] ]; /* Klaus Brockhaus, Aug 03 2007 */
    
  • Mathematica
    a[n_] := 2^(n+1) + 2*Sin[n*Pi/3]/Sqrt[3]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Aug 13 2012 *)
    LinearRecurrence[{3,-3,2},{2,5,9},40] (* Harvey P. Dale, Jun 21 2017 *)
  • PARI
    {m=31; v=vector(m); v[1]=2; v[2]=5; v[3]=9; for(n=4, m, v[n]=3*v[n-1]-3*v[n-2]+2*v[n-3]); v} \\ Klaus Brockhaus, Aug 03 2007
    
  • PARI
    {for(n=0, 30, print1(2^(n+1)+[0, 1, 1, 0, -1, -1][n%6+1], ","))} \\ Klaus Brockhaus, Aug 03 2007
    
  • PARI
    Vec((2-x) / ((1-2*x)*(1-x+x^2)) + O(x^40)) \\ Colin Barker, Jan 20 2017

Formula

G.f.: (2 - x) / ((1 - 2*x)*(1 - x + x^2)).
a(0) = 2; a(1) = 5; a(2) = 9; for n > 2, a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3).
a(n) = 2^(n+1) + A128834(n).
a(0) = 2; for n > 0, a(n) = 2*a(n-1) + A057079(n+1).
E.g.f.: 2*(sqrt(3)*exp(2*x) + sin(sqrt(3)*x/2)*exp(x/2))/sqrt(3). - Ilya Gutkovskiy, Jun 20 2016
a(n) = 2^(n+1) + (2*sin((Pi*n)/3))/sqrt(3). - Colin Barker, Jan 20 2017

Extensions

Edited and extended by Klaus Brockhaus, Aug 03 2007