A130752 Binomial transform of periodic sequence (2, 3, 1).
2, 5, 9, 16, 31, 63, 128, 257, 513, 1024, 2047, 4095, 8192, 16385, 32769, 65536, 131071, 262143, 524288, 1048577, 2097153, 4194304, 8388607, 16777215, 33554432, 67108865, 134217729, 268435456, 536870911, 1073741823, 2147483648, 4294967297, 8589934593
Offset: 0
References
- P. Curtz, Exercise Book, manuscript, 1995.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,2).
Programs
-
Magma
m:=31; S:=[ [2, 3, 1][(n-1) mod 3 +1]: n in [1..m] ]; [ &+[ Binomial(i-1, k-1)*S[k]: k in [1..i] ]: i in [1..m] ]; /* Klaus Brockhaus, Aug 03 2007 */
-
Mathematica
a[n_] := 2^(n+1) + 2*Sin[n*Pi/3]/Sqrt[3]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Aug 13 2012 *) LinearRecurrence[{3,-3,2},{2,5,9},40] (* Harvey P. Dale, Jun 21 2017 *)
-
PARI
{m=31; v=vector(m); v[1]=2; v[2]=5; v[3]=9; for(n=4, m, v[n]=3*v[n-1]-3*v[n-2]+2*v[n-3]); v} \\ Klaus Brockhaus, Aug 03 2007
-
PARI
{for(n=0, 30, print1(2^(n+1)+[0, 1, 1, 0, -1, -1][n%6+1], ","))} \\ Klaus Brockhaus, Aug 03 2007
-
PARI
Vec((2-x) / ((1-2*x)*(1-x+x^2)) + O(x^40)) \\ Colin Barker, Jan 20 2017
Formula
G.f.: (2 - x) / ((1 - 2*x)*(1 - x + x^2)).
a(0) = 2; a(1) = 5; a(2) = 9; for n > 2, a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3).
a(n) = 2^(n+1) + A128834(n).
a(0) = 2; for n > 0, a(n) = 2*a(n-1) + A057079(n+1).
E.g.f.: 2*(sqrt(3)*exp(2*x) + sin(sqrt(3)*x/2)*exp(x/2))/sqrt(3). - Ilya Gutkovskiy, Jun 20 2016
a(n) = 2^(n+1) + (2*sin((Pi*n)/3))/sqrt(3). - Colin Barker, Jan 20 2017
Extensions
Edited and extended by Klaus Brockhaus, Aug 03 2007
Comments