cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130755 Binomial transform of periodic sequence (3, 1, 2).

Original entry on oeis.org

3, 4, 7, 15, 32, 65, 129, 256, 511, 1023, 2048, 4097, 8193, 16384, 32767, 65535, 131072, 262145, 524289, 1048576, 2097151, 4194303, 8388608, 16777217, 33554433, 67108864, 134217727, 268435455, 536870912, 1073741825, 2147483649
Offset: 0

Views

Author

Paul Curtz, Jul 13 2007

Keywords

Comments

The third sequence of "less twisted numbers"; this sequence, A130750 and A130752 form a "suite en trio" (cf. reference, p. 130).
First differences of A130752, second differences of A130750.
Sequence equals its third differences:
3 4 7 15 32 65 129 256 511 1023
1 3 8 17 33 64 127 255 512
2 5 9 16 31 63 128 257
3 4 7 15 32 65 129

References

  • P. Curtz, Exercise Book, manuscript, 1995.

Crossrefs

Cf. A010882 (periodic (1, 2, 3)), A128834 (periodic (0, 1, 1, 0, -1, -1)), A057079 (periodic (1, 2, 1, -1, -2, -1)), A130750 (first differences), A130752 (second differences).

Programs

  • Magma
    m:=31; S:=[ [3, 1, 2][(n-1) mod 3 +1]: n in [1..m] ]; [ &+[ Binomial(i-1, k-1)*S[k]: k in [1..i] ]: i in [1..m] ]; // Klaus Brockhaus, Aug 03 2007
    
  • Magma
    I:=[3,4,7]; [n le 3 select I[n] else 3*Self(n-1) - 3*Self(n-2) + 2*Self(n-3): n in [1..30]]; // G. C. Greubel, Jan 15 2018
    
  • Mathematica
    CoefficientList[Series[(3-5*x+4*x^2)/((1-2*x)*(1-x+x^2)), {x, 0, 50}], x] (* or *) LinearRecurrence[{3,-3,2}, {3,4,7}, 30] (* G. C. Greubel, Jan 15 2018 *)
  • PARI
    {m=31; v=vector(m); v[1]=3; v[2]=4; v[3]=7; for(n=4, m, v[n]=3*v[n-1]-3*v[n-2]+2*v[n-3]); v} \\ Klaus Brockhaus, Aug 03 2007
    
  • PARI
    {for(n=0, 30, print1(2^(n+1)+[1, 0, -1, -1, 0, 1][n%6+1], ","))} \\ Klaus Brockhaus, Aug 03 2007

Formula

G.f.: (3-5*x+4*x^2)/((1-2*x)*(1-x+x^2)).
a(0) = 3; a(1) = 4; a(2) = 7; for n > 2, a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3).
a(n) = 2^(n+1) + A128834(n+2).
a(0) = 3; for n > 0, a(n) = 2*a(n-1) + A057079(n+3).

Extensions

Edited and extended by Klaus Brockhaus, Aug 03 2007