A130755 Binomial transform of periodic sequence (3, 1, 2).
3, 4, 7, 15, 32, 65, 129, 256, 511, 1023, 2048, 4097, 8193, 16384, 32767, 65535, 131072, 262145, 524289, 1048576, 2097151, 4194303, 8388608, 16777217, 33554433, 67108864, 134217727, 268435455, 536870912, 1073741825, 2147483649
Offset: 0
References
- P. Curtz, Exercise Book, manuscript, 1995.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..300 from Vincenzo Librandi)
- Index entries for linear recurrences with constant coefficients, signature (3,-3,2).
Crossrefs
Programs
-
Magma
m:=31; S:=[ [3, 1, 2][(n-1) mod 3 +1]: n in [1..m] ]; [ &+[ Binomial(i-1, k-1)*S[k]: k in [1..i] ]: i in [1..m] ]; // Klaus Brockhaus, Aug 03 2007
-
Magma
I:=[3,4,7]; [n le 3 select I[n] else 3*Self(n-1) - 3*Self(n-2) + 2*Self(n-3): n in [1..30]]; // G. C. Greubel, Jan 15 2018
-
Mathematica
CoefficientList[Series[(3-5*x+4*x^2)/((1-2*x)*(1-x+x^2)), {x, 0, 50}], x] (* or *) LinearRecurrence[{3,-3,2}, {3,4,7}, 30] (* G. C. Greubel, Jan 15 2018 *)
-
PARI
{m=31; v=vector(m); v[1]=3; v[2]=4; v[3]=7; for(n=4, m, v[n]=3*v[n-1]-3*v[n-2]+2*v[n-3]); v} \\ Klaus Brockhaus, Aug 03 2007
-
PARI
{for(n=0, 30, print1(2^(n+1)+[1, 0, -1, -1, 0, 1][n%6+1], ","))} \\ Klaus Brockhaus, Aug 03 2007
Formula
Extensions
Edited and extended by Klaus Brockhaus, Aug 03 2007
Comments