A130783 Maximum value of the n-th difference of a permutation of 0..n.
0, 1, 3, 10, 25, 66, 154, 372, 837, 1930, 4246, 9516, 20618, 45332, 97140, 210664, 447661, 960858, 2028478, 4319100, 9070110, 19188796, 40122028, 84438360, 175913250, 368603716, 765561564, 1598231992, 3310623412, 6889682280, 14238676712, 29551095248
Offset: 0
Examples
a(1)=1 because 0 1 has a first difference of 1; a(2)=3 because 2 0 1 has a second difference of 3.
Links
- Fung Lam, Table of n, a(n) for n = 0..3000
- F. Disanto, A. Frosini, and S. Rinaldi, Square involutions, J. Int. Seq. 14 (2011) # 11.3.5.
Programs
-
Maple
A130783:=n->(n+1)*(2^n-binomial(n,floor(n/2)))/2; seq(A130783(n), n=0..50); # Wesley Ivan Hurt, Nov 25 2013
-
Mathematica
Table[(n + 1) (2^n - Binomial[n, Floor[n/2]])/2, {n, 0, 50}] (* Wesley Ivan Hurt, Nov 25 2013 *)
-
PARI
a(n)=(n+1)*(2^n-binomial(n,n\2))/2 \\ Charles R Greathouse IV, Jan 30 2012
-
Python
from math import comb def A130783(n): return (n+1)*((1<
>1))>>1 # Chai Wah Wu, Jun 04 2024
Formula
a(n) = (n+1)*(2^(n-1)-binomial(n-1,n/2)) if n is even else ((n+1)/2)*(2^n-binomial(n,(n+1)/2)). - Vladeta Jovovic, Aug 23 2007
a(n) = (n+1)*(2^n-binomial(n,[n/2]))/2, where [x] is floor. - Graeme McRae, Jan 30 2012
G.f.: (1-sqrt((1-2*x)/(1+2*x)))/(2*(1-2*x)^2). - Vladeta Jovovic, Aug 24 2007
Asymptotics: a(n) ~ 2^(n-1)*(n+1-sqrt(2*n/Pi)). - Fung Lam, Mar 28 2014
D-finite with recurrence (n-1)*n*a(n) = 2*(n-1)*(n+1)*a(n-1) + 4*(n-2)*n*a(n-2) - 8*(n-1)*n*a(n-3). - Vaclav Kotesovec, Mar 28 2014
Comments