A130850 Triangle read by rows, 0 <= k <= n, T(n,k) = Sum_{j=0..n} A(n,j)*binomial(n-j,k) where A(n,j) are the Eulerian numbers A173018.
1, 1, 1, 2, 3, 1, 6, 12, 7, 1, 24, 60, 50, 15, 1, 120, 360, 390, 180, 31, 1, 720, 2520, 3360, 2100, 602, 63, 1, 5040, 20160, 31920, 25200, 10206, 1932, 127, 1, 40320, 181440, 332640, 317520, 166824, 46620, 6050, 255, 1, 362880, 1814400, 3780000, 4233600, 2739240, 1020600, 204630, 18660, 511, 1
Offset: 0
Examples
Triangle begins: 1 1 1 2 3 1 6 12 7 1 24 60 50 15 1 120 360 390 180 31 1 720 2520 3360 2100 602 63 1 5040 20160 31920 25200 10206 1932 127 1 40320 181440 332640 317520 166824 46620 6050 255 1 362880 1814400 3780000 4233600 2739240 1020600 204630 18660 511 1 ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1034 [a(438) and a(901) corrected by _Georg Fischer_, Nov 10 2021]
- Nguyen-Huu-Bong, Some Combinatorial Properties of Summation Operators, J. Comb. Theory, Ser. A, Vo. 11, No. 3 (1971), pp. 213-221. See Table on page 214.
- John K. Sikora, On Calculating the Coefficients of a Polynomial Generated Sequence Using the Worpitzky Number Triangles, arXiv:1806.00887 [math.NT], 2018.
- Sam Vandervelde, The Worpitzky Numbers Revisited, Amer. Math. Monthly, Vol. 125, No. 3 (2018), pp. 198-206.
Crossrefs
Programs
-
Mathematica
Table[(n-k)!*StirlingS2[n+1, n-k+1], {n, 0, 10}, {k, 0, n}] (* G. C. Greubel, Nov 15 2015 *)
-
PARI
t(n, k) = (n-k)!*stirling(n+1, n-k+1, 2); tabl(nn) = for (n=0, 10, for (k=0, n, print1(t(n,k),", ")); print()); \\ Michel Marcus, Nov 16 2015
-
Sage
from sage.combinat.combinat import eulerian_number def A130850(n, k): return add(eulerian_number(n, j)*binomial(n-j, k) for j in (0..n)) for n in (0..7): [A130850(n, k) for k in (0..n)] # Peter Luschny, May 21 2013
Formula
T(n,k) = (-1)^k*A075263(n,k).
T(n,k) = (n-k)!*A008278(n+1,k+1).
T(n,n-1) = 2^n - 1 for n > 0. - Derek Orr, Dec 31 2015
E.g.f.: x/(e^(-x*t)*(1+x)-1). - Tom Copeland, Nov 14 2016
Sum_{k=1..floor(n/2)} T(n,2k) = Sum_{k=0..floor(n/2)} T(n,2k+1) = A000670(n). - Jacob Sprittulla, Oct 03 2021
Extensions
New name from Peter Luschny, May 21 2013
Comments