cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130853 Runs of 1's of lengths 1, Fibonacci numbers F(1), F(2), F(3), ... (A000045) separated by 0's.

Original entry on oeis.org

0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Jani Melik, Jul 21 2007

Keywords

Comments

Might be called a Fibonacci message.

Examples

			Begin with 0. First Fibonacci number F(1)=1, so append 1's to 0 once - 01, append 0 - 010, F(2)=1, append 1's once and 0 - 01010, F(3)=2, we append two 1's and 0 - 01010110, ...
As a triangle:
  0, 1;
  0, 1;
  0, 1, 1;
  0, 1, 1, 1;
  0, 1, 1, 1, 1, 1;
  0, 1, 1, 1, 1, 1, 1, 1, 1;
  0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
  0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
  ...
		

Crossrefs

Cf. A000045, A093521, A232896 (the positions of zeros).

Programs

  • Maple
    ts_Finonacci_zap:=proc(n) local i,j,tren,ans; ans := [ 0 ]: for i from 1 to n do tren := combinat[fibonacci](i): for j from 1 to tren do ans:=[ op(ans), 1 ]: od: ans:=[ op(ans), 0 ]: od; RETURN(ans) end: ts_Finonacci_zap(16);
    # second Maple program:
    T:= n-> [0,1$(<<0|1>, <1|1>>^n)[1,2]][]:
    seq(T(n), n=1..10);  # Alois P. Heinz, Dec 11 2024
  • Mathematica
    T[n_] := Join[{0}, Table[1, MatrixPower[{{0, 1}, {1, 1}}, n][[1, 2]]]];
    Table[T[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, May 21 2025, after Alois P. Heinz *)
  • PARI
    { n=0; i=0; while(n<22, n++; i++; write("b130853.txt", i, " ", 0); k = fibonacci(n); while(k>0, i++; k--; write("b130853.txt", i, " ", 1))); }; \\ Antti Karttunen, Dec 07 2017

Formula

a(n) = b(n+1) - b(n) where b(n) = round(LambertW((phi^(3/2 + n)*log(phi))/sqrt(5)) / log(phi)), phi = (1 + sqrt(5))/2. - Alan Michael Gómez Calderón, Dec 11 2024