A130853 Runs of 1's of lengths 1, Fibonacci numbers F(1), F(2), F(3), ... (A000045) separated by 0's.
0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Examples
Begin with 0. First Fibonacci number F(1)=1, so append 1's to 0 once - 01, append 0 - 010, F(2)=1, append 1's once and 0 - 01010, F(3)=2, we append two 1's and 0 - 01010110, ... As a triangle: 0, 1; 0, 1; 0, 1, 1; 0, 1, 1, 1; 0, 1, 1, 1, 1, 1; 0, 1, 1, 1, 1, 1, 1, 1, 1; 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1; 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1; ...
Links
Crossrefs
Programs
-
Maple
ts_Finonacci_zap:=proc(n) local i,j,tren,ans; ans := [ 0 ]: for i from 1 to n do tren := combinat[fibonacci](i): for j from 1 to tren do ans:=[ op(ans), 1 ]: od: ans:=[ op(ans), 0 ]: od; RETURN(ans) end: ts_Finonacci_zap(16); # second Maple program: T:= n-> [0,1$(<<0|1>, <1|1>>^n)[1,2]][]: seq(T(n), n=1..10); # Alois P. Heinz, Dec 11 2024
-
Mathematica
T[n_] := Join[{0}, Table[1, MatrixPower[{{0, 1}, {1, 1}}, n][[1, 2]]]]; Table[T[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, May 21 2025, after Alois P. Heinz *)
-
PARI
{ n=0; i=0; while(n<22, n++; i++; write("b130853.txt", i, " ", 0); k = fibonacci(n); while(k>0, i++; k--; write("b130853.txt", i, " ", 1))); }; \\ Antti Karttunen, Dec 07 2017
Formula
a(n) = b(n+1) - b(n) where b(n) = round(LambertW((phi^(3/2 + n)*log(phi))/sqrt(5)) / log(phi)), phi = (1 + sqrt(5))/2. - Alan Michael Gómez Calderón, Dec 11 2024
Comments