cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A131074 Triangular array T read by rows: T(j,1) = 1 for ((j-1) mod 8) < 4, else 0; T(j,k) = T(j-1,k-1) + T(j,k-1) for 2 <= k <= j.

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 1, 2, 4, 8, 0, 1, 3, 7, 15, 0, 0, 1, 4, 11, 26, 0, 0, 0, 1, 5, 16, 42, 0, 0, 0, 0, 1, 6, 22, 64, 1, 1, 1, 1, 1, 2, 8, 30, 94, 1, 2, 3, 4, 5, 6, 8, 16, 46, 140, 1, 2, 4, 7, 11, 16, 22, 30, 46, 92, 232, 1, 2, 4, 8, 15, 26, 42, 64, 94, 140, 232, 464, 0, 1, 3, 7, 15, 30, 56, 98
Offset: 1

Views

Author

Klaus Brockhaus, following a suggestion of Paul Curtz, Jun 14 2007

Keywords

Comments

All columns are periodic with period length 8. The (4+8*i)-th row equals the first (4+8*i) terms of the main diagonal (i >= 0). Main diagonal and eighth subdiagonal agree; generally j-th subdiagonal equals (j+8)-th subdiagonal.

Examples

			First seven rows of T are
[ 1 ]
[ 1, 2 ]
[ 1, 2, 4 ]
[ 1, 2, 4, 8 ]
[ 0, 1, 3, 7, 15 ]
[ 0, 0, 1, 4, 11, 26 ]
[ 0, 0, 0, 1, 5, 16, 42 ].
		

Crossrefs

Cf. A131022, A129961 (main diagonal of T), A131075 (first subdiagonal of T), A131076 (row sums of T), A131077 (antidiagonal sums of T). First through sixth column of T are in A131078, A131079, A131080, A131081, A131082, A131083 resp.

Programs

  • Magma
    m:=13; M:=ZeroMatrix(IntegerRing(), m, m); for j:=1 to m do if (j-1) mod 8 lt 4 then M[j, 1]:=1; end if; end for; for k:=2 to m do for j:=k to m do M[j, k]:=M[j-1, k-1]+M[j, k-1]; end for; end for; &cat[ [ M[j, k]: k in [1..j] ]: j in [1..m] ];
  • Mathematica
    T[j_, 1] := If[Mod[j-1, 8]<4, 1, 0]; T[j_, k_] := T[j, k] = T[j-1, k-1]+T[j, k-1]; Table[T[j, k], {j, 1, 13}, {k, 1, j}] // Flatten (* Jean-François Alcover, Mar 06 2014 *)
  • PARI
    {m=13; M=matrix(m, m); for(j=1, m, M[j, 1]=if((j-1)%8<4, 1, 0)); for(k=2, m, for(j=k, m, M[j, k]=M[j-1, k-1]+M[j, k-1])); for(j=1, m, for(k=1, j, print1(M[j, k], ",")))}
    

A129961 Main diagonal of triangular array T: T(j,1) = 1 for ((j-1) mod 8) < 4, else 0; T(j,k) = T(j-1,k-1)+T(j,k-1) for 2 <= k <= j.

Original entry on oeis.org

1, 2, 4, 8, 15, 26, 42, 64, 94, 140, 232, 464, 1092, 2744, 6840, 16384, 37384, 81296, 169120, 338240, 654192, 1232288, 2280864, 4194304, 7761376, 14635712, 28384384, 56768768, 116566080, 243472256, 511907712, 1073741824, 2232713344
Offset: 1

Views

Author

Paul Curtz, Jun 10 2007

Keywords

Comments

First column is periodically 1 1 1 1 0 0 0 0 (see A131078).
First subdiagonal is 1, 2, 4, 7, 11, 16, 22, ... (see A131075); next subdiagonals are 1, 2, 3, 4, 5, 6, 8, 16, 46, 140, ..., 1, 1, 1, 1, 1, 2, 8, 30, 94, 256, ..., 0, 0, 0, 0, 1, 6, 22, 64, 162, 372, ..., 0, 0, 0, 1, 5, 16, 42, 98, 210, 420, ...., 0, 0, 1, 4, 11, 26, 56, 112, 210, 372, ..., 0, 1, 3, 7, 15, 30, 56, 98, 162, 256, ...,1, 2, 4, 8, 15, 26, 42, 64, 94, 140, ... . Main diagonal and eighth subdiagonal agree; generally j-th subdiagonal equals (j+8)-th subdiagonal.
Antidiagonal sums are 1, 1, 3, 3, 6, 5, 11, ... (see A131077).

Examples

			First seven rows of T are
[ 1 ]
[ 1, 2 ]
[ 1, 2, 4 ]
[ 1, 2, 4, 8 ]
[ 0, 1, 3, 7, 15 ]
[ 0, 0, 1, 4, 11, 26 ]
[ 0, 0, 0, 1, 5, 16, 42 ].
		

Crossrefs

Cf. A129339, A131074 (T read by rows), A131075 (first subdiagonal of T), A131076 (row sums of T), A131077 (antidiagonal sums of T). First through sixth column of T are in A131078, A131079, A131080, A131081, A131082, A131083 resp.

Programs

  • Magma
    m:=33; M:=ZeroMatrix(IntegerRing(), m, m); for j:=1 to m do if (j-1) mod 8 lt 4 then M[j, 1]:=1; end if; end for; for k:=2 to m do for j:=k to m do M[j, k]:=M[j-1, k-1]+M[j, k-1]; end for; end for; [ M[n, n]: n in [1..m] ]; // Klaus Brockhaus, Jun 14 2007
    
  • Magma
    m:=33; S:=[ [1, 1, 1, 1, 0, 0, 0, 0][(n-1) mod 8 + 1]: n in [1..m] ]; [ &+[ Binomial(i-1, k-1)*S[k]: k in [1..i] ]: i in [1..m] ]; // Klaus Brockhaus, Jun 17 2007
  • PARI
    {m=33; v=concat([1, 2, 4, 8, 15], vector(m-5)); for(n=6, m, v[n]=6*v[n-1]-14*v[n-2]+16*v[n-3]-10*v[n-4]+4*v[n-5]); v} \\ Klaus Brockhaus, Jun 14 2007
    

Formula

G.f.: x*(1-x)^4/((1-2*x)*(1-4*x+6*x^2-4*x^3+2*x^4)).
a(1) = 1, a(2) = 2, a(3) = 4, a(4) = 8, a(5) = 15; for n > 5, a(n) = 6*a(n-1)-14*a(n-2)+16*a(n-3)-10*a(n-4)+4*a(n-5).
Binomial transform of A131078. - Klaus Brockhaus, Jun 17 2007

Extensions

Edited and extended by Klaus Brockhaus, Jun 14 2007
G.f. corrected by Klaus Brockhaus, Oct 15 2009

A131075 First subdiagonal of triangular array T: T(j,1) = 1 for ((j-1) mod 8) < 4, else 0; T(j,k) = T(j-1,k-1) + T(j,k-1) for 2 <= k <= j.

Original entry on oeis.org

1, 2, 4, 7, 11, 16, 22, 30, 46, 92, 232, 628, 1652, 4096, 9544, 21000, 43912, 87824, 169120, 315952, 578096, 1048576, 1913440, 3567072, 6874336, 13748672, 28384384, 59797312, 126906176, 268435456, 561834112, 1158971520, 2353246336, 4706492672, 9292452352
Offset: 1

Views

Author

Klaus Brockhaus, following a suggestion of Paul Curtz, Jun 14 2007

Keywords

Comments

Also first differences of main diagonal A129961.

Examples

			For first seven rows of T see A131074 or A129961.
		

Crossrefs

Cf. A131074 (T read by rows), A129961 (main diagonal of T), A131076 (row sums of T), A131077 (antidiagonal sums of T). First through sixth column of T are in A131078, A131079, A131080, A131081, A131082, A131083 resp.

Programs

  • Magma
    m:=34; M:=ZeroMatrix(IntegerRing(), m, m); for j:=1 to m do if (j-1) mod 8 lt 4 then M[j, 1]:=1; end if; end for; for k:=2 to m do for j:=k to m do M[j, k]:=M[j-1, k-1]+M[j, k-1]; end for; end for; [ M[n+1, n]: n in [1..m-1] ];
    
  • PARI
    lista(m) = my(v=concat([1, 2, 4, 7, 11], vector(m-5))); for(n=6, m, v[n]=6*v[n-1]-14*v[n-2]+16*v[n-3]-10*v[n-4]+4*v[n-5]); v

Formula

a(1) = 1, a(2) = 2, a(3) = 4, a(4) = 7, a(5) = 11; for n > 5, a(n) = 6*a(n-1)-14*a(n-2)+16*a(n-3)-10*a(n-4)+4*a(n-5).
G.f.: x*(1-4*x+6*x^2-5*x^3+3*x^4)/((1-2*x)*(1-4*x+6*x^2-4*x^3+2*x^4)).

A131076 Row sums of triangular array T: T(j,1) = 1 for ((j-1) mod 8) < 4, else 0; T(j,k) = T(j-1,k-1) + T(j,k-1) for 2 <= k <= j.

Original entry on oeis.org

1, 3, 7, 15, 26, 42, 64, 93, 139, 231, 463, 1092, 2744, 6840, 16384, 37383, 81295, 169119, 338239, 654192, 1232288, 2280864, 4194304, 7761375, 14635711, 28384383, 56768767, 116566080, 243472256, 511907712, 1073741824, 2232713343, 4585959679, 9292452351
Offset: 1

Views

Author

Klaus Brockhaus, following a suggestion of Paul Curtz, Jun 14 2007

Keywords

Comments

Sum of n-th row equals (n+1)-th term of main diagonal minus (n+1)-th term of first column: a(n) = A129961(n+1) - A131078(n+1).

Examples

			For first seven rows of T see A131074 or A129961.
		

Crossrefs

Cf. A131074 (T read by rows), A129961 (main diagonal of T), A131075 (first subdiagonal of T), A131077 (antidiagonal sums of T). First through sixth column of T are in A131078, A131079, A131080, A131081, A131082, A131083 resp.

Programs

  • Magma
    m:=32; M:=ZeroMatrix(IntegerRing(), m, m); for j:=1 to m do if (j-1) mod 8 lt 4 then M[j, 1]:=1; end if; end for; for k:=2 to m do for j:=k to m do M[j, k]:=M[j-1, k-1]+M[j, k-1]; end for; end for; [ &+[ M[j, k]: k in [1..j] ]: j in [1..m] ];
    
  • Mathematica
    LinearRecurrence[{7,-20,30,-27,21,-24,30,-26,14,-4},{1,3,7,15,26,42,64,93,139,231},40] (* Harvey P. Dale, Jun 23 2025 *)
  • PARI
    lista(m) = my(M=matrix(m, m)); for(j=1, m, M[j, 1]=if((j-1)%8<4, 1, 0)); for(k=2, m, for(j=k, m, M[j, k]=M[j-1, k-1]+M[j, k-1])); for(j=1, m, print1(sum(k=1, j, M[j, k]), ", "))

Formula

G.f.: x*(1-4*x+6*x^2-4*x^3-2*x^4+10*x^5-10*x^6+5*x^7-x^8)/((1-x)*(1-2*x)*(1+x^4)*(1-4*x+6*x^2-4*x^3+2*x^4)).

A131077 Antidiagonal sums of triangular array T: T(j,1) = 1 for ((j-1) mod 8) < 4, else 0; T(j,k) = T(j-1,k-1) + T(j,k-1) for 2 <= k <= j.

Original entry on oeis.org

1, 1, 3, 3, 6, 5, 11, 8, 20, 14, 35, 24, 59, 41, 100, 77, 178, 162, 341, 364, 705, 837, 1542, 1915, 3458, 4282, 7741, 9280, 17021, 19461, 36482, 39559, 76042, 78218, 154261, 151184, 305445, 287509, 592954, 542223, 1135178, 1023210, 2158389, 1949312, 4107701
Offset: 1

Views

Author

Klaus Brockhaus, following a suggestion of Paul Curtz, Jun 14 2007

Keywords

Examples

			For first seven rows of T see A131074 or A129961.
		

Crossrefs

Cf. A131074 (T read by rows), A129961 (main diagonal of T), A131075 (first subdiagonal of T), A131076 (row sums of T). First through sixth column of T are in A131078, A131079, A131080, A131081, A131082, A131083 resp.

Programs

  • Magma
    m:=44; M:=ZeroMatrix(IntegerRing(), m, m); for j:=1 to m do if (j-1) mod 8 lt 4 then M[j, 1]:=1; end if; end for; for k:=2 to m do for j:=k to m do M[j, k]:=M[j-1, k-1]+M[j, k-1]; end for; end for; [ &+[ M[j-k+1, k]: k in [1..(j+1) div 2] ]: j in [1..m] ];
  • PARI
    lista(m) = my(M=matrix(m, m)); for(j=1, m, M[j, 1]=if((j-1)%8<4, 1, 0)); for(k=2, m, for(j=k, m, M[j, k]=M[j-1, k-1]+M[j, k-1])); for(j=1, m, print1(sum(k=1, (j+1)\2, M[j-k+1, k]), ", "))
    

Formula

G.f.: x*(1-4*x^2+6*x^4-x^5-4*x^6+3*x^7+x^8-3*x^9+x^10+2*x^11-x^12) / ((1-x)*(1-2*x^2)*(1+x^4)*(1-4*x^2+6*x^4-4*x^6+2*x^8)).

A137002 Numbers k such that k and k^2 use only the digits 1, 2 and 5.

Original entry on oeis.org

1, 5, 11, 15
Offset: 1

Views

Author

Jonathan Wellons (wellons(AT)gmail.com), Jan 22 2008

Keywords

Comments

Sequence terminates.
Generated with DrScheme.
Numbers appearing in A131082; subsequence of A031153, A137003. - M. F. Hasler, Jan 24 2008

Examples

			15^2 = 225.
		

Crossrefs

Showing 1-6 of 6 results.