A131385 Product ceiling(n/1)*ceiling(n/2)*ceiling(n/3)*...*ceiling(n/n) (the 'ceiling factorial').
1, 1, 2, 6, 16, 60, 144, 672, 1536, 6480, 19200, 76032, 165888, 1048320, 2257920, 8294400, 28311552, 126904320, 268738560, 1470873600, 3096576000, 16094453760, 51385466880, 175814737920, 366917713920, 2717245440000, 6782244618240, 22754631352320, 69918208819200
Offset: 0
Keywords
Examples
From _Paul D. Hanna_, Nov 26 2012: (Start) Illustrate initial terms using formula involving the floor function []: a(1) = 1; a(2) = [2/1] = 2; a(3) = [3/1]*[4/2] = 6; a(4) = [4/1]*[5/2]*[6/3] = 16; a(5) = [5/1]*[5/2]*[7/3]*[8/4] = 60; a(6) = [6/1]*[7/2]*[8/3]*[9/4]*[10/5] = 144. Illustrate another alternative generating method: a(1) = 1; a(2) = (2/1)^[1/1] = 2; a(3) = (2/1)^[2/1] * (3/2)^[2/2] = 6; a(4) = (2/1)^[3/1] * (3/2)^[3/2] * (4/3)^[3/3] = 16; a(5) = (2/1)^[4/1] * (3/2)^[4/2] * (4/3)^[4/3] * (5/4)^[4/4] = 60. (End) For n=3 the a(3)=6 functions f from subsets of {1,2} into {1,2} with f(x) == 0 (mod x) are the following: f=empty set (since null function vacuously holds), f={(1,1)}, f={(1,2)}, f={(2,2)}, f={(1,1),(2,2)}, and f={(1,2),(2,2)}. - _Dennis P. Walsh_, Nov 13 2015
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- D. P. Walsh, Notes on finite functions from subsets of {1,2,...,n} into {1,2,...,n}
Programs
-
Maple
a:= n-> mul(ceil(n/k), k=1..n): seq(a(n), n=0..40); # Dennis P. Walsh, Nov 13 2015
-
Mathematica
Table[Product[Ceiling[n/k],{k,n}],{n,25}] (* Harvey P. Dale, Sep 18 2011 *)
-
PARI
a(n)=prod(k=1,n-1,floor((n+k-1)/k)) \\ Paul D. Hanna, Feb 01 2013
-
PARI
a(n)=prod(k=1,n-1,((k+1)/k)^floor((n-1)/k)) for(n=1,30,print1(a(n),", ")) \\ Paul D. Hanna, Feb 01 2013
Formula
a(n) = Product_{k=1..n} ceiling(n/k).
Formulas from Paul D. Hanna, Nov 26 2012: (Start)
a(n) = Product_{k=1..n-1} floor((n+k-1)/k) for n>1.
a(n) = Product_{k=1..n-1} ((k+1)/k)^floor((n-1)/k) for n>1.
Limits: Let L = limit a(n+1)/a(n) = 3.51748725590236964939979369932386417..., then
(1) L = exp( Sum_{n>=1} log((n+1)/n) / n ) ;
(2) L = 2 * exp( Sum_{n>=1} (-1)^(n+1) * Sum_{k>=2} 1/(n*k^(n+1)) ) ;
(4) L = exp( Sum_{n>=1} (-1)^(n+1) * zeta(n+1)/n ) ;
(5) L = exp( Sum_{n>=1} log(n+1) / (n*(n+1)) ) = exp(c) where c = constant A131688.
(End)
Extensions
a(0)=1 prepended by Alois P. Heinz, Oct 30 2023
Comments