A131428 a(n) = 2*C(n) - 1, where C(n) = A000108(n) are the Catalan numbers.
1, 1, 3, 9, 27, 83, 263, 857, 2859, 9723, 33591, 117571, 416023, 1485799, 5348879, 19389689, 70715339, 259289579, 955277399, 3534526379, 13128240839, 48932534039, 182965127279, 686119227299, 2579808294647, 9723892802903, 36734706144303, 139067101832007
Offset: 0
Keywords
Examples
a(3) = 9 = 2*C(3) - 1 = 2*5 - 1, where C refers to the Catalan numbers, A000108.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
GAP
List([0..25], n-> 2*Binomial(2*n,n)/(n+1) - 1); # G. C. Greubel, Aug 12 2019
-
Magma
[2*Catalan(n) -1: n in [0..25]]; // G. C. Greubel, Aug 12 2019
-
Maple
seq(2*binomial(2*n,n)/(n+1)-1, n=0..25); # Emeric Deutsch, Jul 25 2007
-
Mathematica
2CatalanNumber[Range[0,25]]-1 (* Harvey P. Dale, Apr 17 2011 *)
-
PARI
vector(25, n, n--; 2*binomial(2*n,n)/(n+1) - 1) \\ G. C. Greubel, Aug 12 2019
-
Sage
[2*catalan_number(n) -1 for n in (0..25)] # G. C. Greubel, Aug 12 2019
Formula
Right border of triangle A131429.
From Emeric Deutsch, Jul 25 2007: (Start)
a(n) = 2*binomial(2*n,n)/(n+1) - 1.
G.f.: (1-sqrt(1-4*x))/x - 1/(1-x). (End)
(1, 3, 9, 27, 83, ...) = row sums of A118976. - Gary W. Adamson, Aug 31 2007
Row sums of triangle A131428 starting (1, 3, 9, 27, 83, ...). - Gary W. Adamson, Aug 31 2007
Starting with offset 1 = Narayana transform (A001263) of [1,2,2,2,...]. - Gary W. Adamson, Jul 29 2011
D-finite with recurrence (n+1)*a(n) +2*(-2*n+1)*a(n-1) +3*(-n+1)=0. - R. J. Mathar, Nov 22 2024
a(n) = Sum_{k=0..n} ( binomial(n,k) - binomial(n,k-1) )^2 = Sum_{k=0..n} A080233(n,k)^2 = Sum_{k=0..n} A156644(n,k)^2. - Seiichi Manyama, Mar 25 2025
Extensions
More terms from Emeric Deutsch, Jul 25 2007
Comments