cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A131427 A000108(n) preceded by n zeros.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 0, 0, 0, 5, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 42, 0, 0, 0, 0, 0, 0, 132, 0, 0, 0, 0, 0, 0, 0, 429, 0, 0, 0, 0, 0, 0, 0, 0, 1430, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4862, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16796, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 58786, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 208012
Offset: 0

Views

Author

Gary W. Adamson, Jul 10 2007

Keywords

Comments

Triangle given by A000004 DELTA A000012 where DELTA is the operator defined in A084938. - Philippe Deléham, Jul 12 2007
T(n,k) is the number of Dyck paths of semilength n having exactly k U=(1,1) steps. - Alois P. Heinz, Jun 09 2014

Examples

			First few rows of the triangle are:
1;
0, 1;
0, 0, 2;
0, 0, 0, 5;
0, 0, 0, 0, 14;
0, 0, 0, 0, 0, 42;
...
		

Crossrefs

Programs

  • Maple
    T:= (n, k)-> `if`(kAlois P. Heinz, Jun 09 2014
  • Mathematica
    T[n_, n_] := CatalanNumber[n]; T[, ] = 0;
    Table[T[n, k], {n, 0, 15}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 20 2016 *)

Formula

A000108(n) preceded by n zeros, as an infinite lower triangular matrix.

Extensions

More terms from Philippe Deléham, Oct 16 2008

A131429 Triangle read by rows: T(n,k) = C(n) + C(k) - 1 where C(n) = A000108(n) are the Catalan numbers, 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 5, 5, 6, 9, 14, 14, 15, 18, 27, 42, 42, 43, 46, 55, 83, 132, 132, 133, 136, 145, 173, 263, 429, 429, 430, 433, 442, 470, 560, 857, 1430, 1430, 1431, 1434, 1443, 1471, 1561, 1858, 2859, 4862, 4862, 4863, 4866, 4875, 4903, 4993, 5290, 6291, 9723
Offset: 0

Views

Author

Gary W. Adamson, Jul 10 2007

Keywords

Comments

Left column = Catalan numbers, A000108. Right border = 2*A000108 - 1. Row sums = A131430: (1, 2, 7, 25, 88, 311, 1114, ...).

Examples

			First few rows of the triangle are:
   1;
   1,  1;
   2,  2,  3;
   5,  5,  6,  9;
  14, 14, 15, 18, 27;
  42, 42, 43, 46, 55, 83;
  ...
		

Crossrefs

Column k=0 is A000108.
Row sums are A131430.

Programs

  • PARI
    T(n,k)=if(k<=n, binomial(2*n,n)/(n+1) + binomial(2*k,k)/(k+1) - 1, 0) \\ Andrew Howroyd, Sep 01 2018

Formula

Equals (A000012 * A131427) + (A131427 * A000012) - A000012 as infinite lower triangular matrices.

Extensions

Name clarified by Andrew Howroyd, Sep 01 2018

A381846 Area of the unique primitive Pythagorean triple (a,b,c) such that (a-b+c)/2 = A000108(n) and its long leg and hypotenuse are consecutive natural numbers.

Original entry on oeis.org

0, 0, 6, 180, 4914, 142926, 4547796, 157355484, 5842280730, 229795151586, 9475645552620, 406294220860710, 18000809380947036, 820011973477512900, 38258534425043501640, 1822437060664227775020, 88405827105467677196970, 4358079981772447955690490, 217935769988152202470568700
Offset: 0

Views

Author

Keywords

Examples

			For n=3, the short leg is A383615(3,1) = 3 and the long leg is A383615(3,2) = 4  so the area is then a(4) = (3 * 4)/2 = 6.
		

References

  • Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2025.

Crossrefs

Programs

  • Mathematica
    a=Table[(2n)!/(n!(n+1)!),{n,0,18}];Apply[Join,Map[{#(#-1)(2#-1)}&,a]]

Formula

a(n) = (A383615(n,1) * A383615(n,2))/2.
a(n) = (2n)!/(n!(n+1)!)*((2n)!/(n!(n+1)!) - 1)*(2*(2n)!/(n!(n+1)!) - 1).

A382435 a(n) = Sum_{k=0..n} ( binomial(n,k) - binomial(n,k-1) )^6.

Original entry on oeis.org

1, 1, 3, 129, 1587, 39443, 1125383, 30211457, 1107074979, 36214609683, 1433494688871, 54495716261011, 2275005440977063, 95146470595975399, 4170974287982618639, 185640304224109725569, 8492643748223480148419, 395051289603660979274339, 18726850582009755291702599
Offset: 0

Views

Author

Seiichi Manyama, Mar 25 2025

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(x, y) option remember; `if`(y<0 or y>x, 0,
         `if`(x=0, 1, add(b(x-1, y+j), j=[-1, 1])))
        end:
    a:= n-> 2*add(b(n, n-2*j)^6, j=0..n/2)-1:
    seq(a(n), n=0..18);  # Alois P. Heinz, Mar 25 2025
  • PARI
    a(n) = sum(k=0, n, (binomial(n, k)-binomial(n, k-1))^6);
    
  • Python
    from math import comb
    def A382435(n): return (sum((comb(n,j)*(m:=n-(j<<1)+1)//(m+j))**6 for j in range((n>>1)+1))<<1)-1 # Chai Wah Wu, Mar 25 2025

Formula

a(n) = Sum_{k=0..n} A080233(n,k)^6 = Sum_{k=0..n} A156644(n,k)^6.
a(n) = 2 * A382433(n) - 1.

A383615 Length of the long leg of the unique primitive Pythagorean triple (x,y,z) such that (x-y+z)/2 = A000108(n) and its long leg and hypotenuse are consecutive natural numbers.

Original entry on oeis.org

4, 40, 364, 3444, 34584, 367224, 4086940, 47268364, 564177640, 6911470020, 86537568264, 1103799334200, 14305253278320, 187980019758360, 2500329584942460, 33615542888998620, 456277454520102600, 6246438361923425820, 86175353763393711960, 1197196443738946826760
Offset: 2

Views

Author

Keywords

Examples

			Triangles begin:
  n=2:      3,     4,     5;
  n=3:      9,    40,    41.
This sequence is column 2.
		

Crossrefs

Cf. A000108, A131428 (short leg), A383616 (semiperimeter), A381846 (area).

Formula

a(n) = 2*C(n)*(C(n) - 1) where C(n) = A000108(n).

A383616 Semiperimeter of the unique primitive Pythagorean triple (a,b,c) such that (a-b+c)/2 is A000108(n) and such that its long leg and its hypotenuse are consecutive natural numbers.

Original entry on oeis.org

1, 1, 6, 45, 378, 3486, 34716, 367653, 4088370, 47273226, 564194436, 6911528806, 86537776276, 1103800077100, 14305255952760, 187980029453205, 2500329620300130, 33615543018643410, 456277454997741300, 6246438363690689010, 86175353769957832380, 1197196443763413093780, 16738118900201817535560
Offset: 0

Views

Author

Keywords

Examples

			For n=3, the short leg is A383615(3,1) = 3, the long leg is A383615(3,2) = 4 and the hypotenuse is A383615(3,3) = 5 so the semiperimeter is then a(3) = (3 + 4 + 5)/2 = 6.
		

References

  • Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2025.

Crossrefs

Programs

  • Mathematica
    a=Table[(2n)!/(n!(n+1)!),{n,0,22}];Apply[Join,Map[{#(2#-1)}&,a]]

Formula

a(n) = (A383615(n,1) + A383615(n,2) + A383615(n,3)) / 2.
a(n) = ((2n)! / (n!*(n+1)!)) * (2*(2n)! / (n!*(n+1)!) - 1).

A381676 a(n) = Sum_{k=0..n} binomial(n,k) * ( binomial(n,k) - binomial(n,k-1) )^2.

Original entry on oeis.org

1, 1, 4, 17, 86, 472, 2752, 16753, 105394, 680366, 4484360, 30067160, 204508240, 1408057120, 9796738304, 68786005361, 486845236106, 3470187822754, 24891491746792, 179556655434382, 1301857088258836, 9482632068303296, 69361538748381824, 509303099950899352
Offset: 0

Views

Author

Seiichi Manyama, Mar 25 2025

Keywords

Crossrefs

Programs

  • Magma
    [ &+[Binomial(n, k)^2 * (Binomial(n, k) - (k gt 0 select Binomial(n, k-1) else 0)) : k in [0..n]] : n in [0..20] ]; // Vincenzo Librandi, Mar 27 2025
  • Mathematica
    Table[Sum[Binomial[n,k]^2*(Binomial[n,k]-Binomial[n,k-1]),{k,0,n}],{n,0,20}] (* Vincenzo Librandi, Mar 27 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n, k)*(binomial(n, k)-binomial(n, k-1))^2);
    

Formula

a(n) = Sum_{k=0..n} binomial(n,k)^2 * ( binomial(n,k) - binomial(n,k-1) ).
a(n) ~ 2^(3*n+3) / (Pi * 3^(3/2) * n^2). - Vaclav Kotesovec, Mar 26 2025

A382434 a(n) = Sum_{k=0..n} ( binomial(n,k) - binomial(n,k-1) )^4.

Original entry on oeis.org

1, 1, 3, 33, 195, 1763, 15623, 156257, 1630947, 17911299, 203739015, 2389928995, 28749060871, 353362388551, 4424242664975, 56290517376737, 726355164976547, 9490129871680355, 125375330053632455, 1672895457018337859, 22522481793315373319, 305695116823973096519
Offset: 0

Views

Author

Seiichi Manyama, Mar 25 2025

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(x, y) option remember; `if`(y<0 or y>x, 0,
         `if`(x=0, 1, add(b(x-1, y+j), j=[-1, 1])))
        end:
    a:= n-> 2*add(b(n, n-2*j)^4, j=0..n/2)-1:
    seq(a(n), n=0..21);  # Alois P. Heinz, Mar 25 2025
  • PARI
    a(n) = sum(k=0, n, (binomial(n, k)-binomial(n, k-1))^4);
    
  • Python
    from math import comb
    def A382434(n): return (sum((comb(n,j)*(m:=n-(j<<1)+1)//(m+j))**4 for j in range((n>>1)+1))<<1)-1 # Chai Wah Wu, Mar 25 2025

Formula

a(n) = Sum_{k=0..n} A080233(n,k)^4 = Sum_{k=0..n} A156644(n,k)^4.
a(n) = 2 * A129123(n) - 1.
D-finite with recurrence n*(n+1)^3*a(n) -2*n*(11*n^3-17*n^2+5*n+5)*a(n-1) -4*(n-1)*(70*n^3-365*n^2+527*n-162)*a(n-2) +8*(n-2)*(584*n^3-5020*n^2+14111*n-13059)*a(n-3) +1344*(4*n-11)*(4*n-13)*(-3+n)^2*a(n-4) +9*(2875*n^4-33975*n^3+149945*n^2-293541*n+215336)=0. - R. J. Mathar, Mar 31 2025

A118976 Triangle read by rows: T(n,k) = binomial(n-1,k-1)*binomial(n,k-1)/k + binomial(n-1,k)*binomial(n,k)/(k+1) (1 <= k <= n). In other words, to each entry of the Narayana triangle (A001263) add the entry on its right.

Original entry on oeis.org

1, 2, 1, 4, 4, 1, 7, 12, 7, 1, 11, 30, 30, 11, 1, 16, 65, 100, 65, 16, 1, 22, 126, 280, 280, 126, 22, 1, 29, 224, 686, 980, 686, 224, 29, 1, 37, 372, 1512, 2940, 2940, 1512, 372, 37, 1, 46, 585, 3060, 7812, 10584, 7812, 3060, 585, 46, 1, 56, 880, 5775, 18810, 33264, 33264, 18810, 5775, 880, 56, 1
Offset: 1

Views

Author

Gary W. Adamson, May 07 2006

Keywords

Comments

Sum of entries in row n = 2*Cat(n)-1, where Cat(n) are the Catalan numbers (A000108).
Row sums = A131428 starting (1, 3, 9, 27, 83, ...). - Gary W. Adamson, Aug 31 2007

Examples

			First few rows of the triangle:
   1;
   2,  1;
   4,  4,   1;
   7, 12,   7,  1;
  11, 30,  30, 11,  1;
  16, 65, 100, 65, 16, 1;
...
Row 4 of the triangle = (7, 12, 7, 1), derived from row 4 of the Narayana triangle, (1, 6, 6, 1): = ((1+6), (6+6), (6+1), (1)).
		

Crossrefs

Programs

  • GAP
    B:=Binomial; Flat(List([1..12], n-> List([1..n], k-> B(n-1,k-1)*B(n,k-1)/k + B(n-1,k)*B(n,k)/(k+1) ))); # G. C. Greubel, Aug 12 2019
  • Magma
    B:=Binomial; [B(n-1,k-1)*B(n,k-1)/k + B(n-1,k)*B(n,k)/(k+1): k in [1..n], n in [1..12]]; // G. C. Greubel, Aug 12 2019
    
  • Maple
    T:=(n,k)->binomial(n-1,k-1)*binomial(n,k-1)/k+binomial(n-1,k) *binomial(n,k)/ (k+1): for n from 1 to 12 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form
    # Alternatively:
    gf := 1 - ((1/2)*(x + 1)*(sqrt((x*y + y - 1)^2 - 4*y^2*x) + x*y + y - 1))/(y*x):
    sery := series(gf, y, 10): coeffy := n -> expand(coeff(sery, y, n)):
    seq(print(seq(coeff(coeffy(n), x, k), k=1..n)), n=1..8); # Peter Luschny, Oct 21 2020
  • Mathematica
    With[{B=Binomial}, Table[B[n-1,k-1]*B[n,k-1]/k + B[n-1,k]*B[n,k]/(k+1), {n,12}, {k,n}]//Flatten] (* G. C. Greubel, Aug 12 2019 *)
  • PARI
    T(n,k) = b=binomial; b(n-1,k-1)*b(n,k-1)/k + b(n-1,k)*b(n,k)/(k+1);
    for(n=1,12, for(k=1,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Aug 12 2019
    
  • Sage
    def T(n, k):
        b=binomial
        return b(n-1,k-1)*b(n,k-1)/k + b(n-1,k)*b(n,k)/(k+1)
    [[T(n, k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Aug 12 2019
    

Formula

G.f.: A001263(x, y)*(x + x*y) + x*y. - Vladimir Kruchinin, Oct 21 2020

Extensions

Edited by N. J. A. Sloane, Nov 29 2006

A131430 Row sums of triangle A131429.

Original entry on oeis.org

1, 2, 7, 25, 88, 311, 1114, 4050, 14917, 55528, 208459, 787920, 2994655, 11433998, 43824437, 168520201, 649840740, 2512011359, 9731179138, 37768570827, 146833956266, 571711568905, 2229035221824, 8701426599353, 34005503702176, 133030452858279, 520905732440782
Offset: 0

Views

Author

Gary W. Adamson, Jul 10 2007

Keywords

Examples

			a(3) = 25 = sum of row 3 terms of triangle A131429: (5 + 5 + 6 + 9).
		

Crossrefs

Programs

  • PARI
    a(n)={binomial(2*n,n) - n - 1 + sum(k=0, n, binomial(2*k,k)/(k+1))} \\ Andrew Howroyd, Aug 28 2018

Formula

a(n) = binomial(2*n, n) - (n+1) + Sum_{k=0..n} binomial(2*k, k)/(k+1). - Andrew Howroyd, Aug 28 2018

Extensions

Terms a(10) and beyond from Andrew Howroyd, Aug 28 2018
Showing 1-10 of 15 results. Next