A243752
Number T(n,k) of Dyck paths of semilength n having exactly k (possibly overlapping) occurrences of the consecutive step pattern given by the binary expansion of n, where 1=U=(1,1) and 0=D=(1,-1); triangle T(n,k), n>=0, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 1, 3, 1, 1, 11, 2, 9, 16, 12, 4, 1, 1, 57, 69, 5, 127, 161, 98, 35, 7, 1, 323, 927, 180, 1515, 1997, 1056, 280, 14, 4191, 5539, 3967, 1991, 781, 244, 64, 17, 1, 1, 10455, 25638, 18357, 4115, 220, 1, 20705, 68850, 77685, 34840, 5685, 246, 1
Offset: 0
Triangle T(n,k) begins:
: n\k : 0 1 2 3 4 5 ...
+-----+----------------------------------------------------------
: 0 : 1; [row 0 of A131427]
: 1 : 0, 1; [row 1 of A131427]
: 2 : 0, 1, 1; [row 2 of A090181]
: 3 : 1, 3, 1; [row 3 of A001263]
: 4 : 1, 11, 2; [row 4 of A091156]
: 5 : 9, 16, 12, 4, 1; [row 5 of A091869]
: 6 : 1, 57, 69, 5; [row 6 of A091156]
: 7 : 127, 161, 98, 35, 7, 1; [row 7 of A092107]
: 8 : 323, 927, 180; [row 8 of A091958]
: 9 : 1515, 1997, 1056, 280, 14; [row 9 of A135306]
: 10 : 4191, 5539, 3967, 1991, 781, 244, ... [row 10 of A094507]
Columns k=0-10 give:
A243754,
A243770,
A243771,
A243772,
A243773,
A243774,
A243775,
A243776,
A243777,
A243778,
A243779, or main diagonals of
A243753,
A243827,
A243828,
A243829,
A243830,
A243831,
A243832,
A243833,
A243834,
A243835,
A243836.
A131428
a(n) = 2*C(n) - 1, where C(n) = A000108(n) are the Catalan numbers.
Original entry on oeis.org
1, 1, 3, 9, 27, 83, 263, 857, 2859, 9723, 33591, 117571, 416023, 1485799, 5348879, 19389689, 70715339, 259289579, 955277399, 3534526379, 13128240839, 48932534039, 182965127279, 686119227299, 2579808294647, 9723892802903, 36734706144303, 139067101832007
Offset: 0
a(3) = 9 = 2*C(3) - 1 = 2*5 - 1, where C refers to the Catalan numbers, A000108.
-
List([0..25], n-> 2*Binomial(2*n,n)/(n+1) - 1); # G. C. Greubel, Aug 12 2019
-
[2*Catalan(n) -1: n in [0..25]]; // G. C. Greubel, Aug 12 2019
-
seq(2*binomial(2*n,n)/(n+1)-1, n=0..25); # Emeric Deutsch, Jul 25 2007
-
2CatalanNumber[Range[0,25]]-1 (* Harvey P. Dale, Apr 17 2011 *)
-
vector(25, n, n--; 2*binomial(2*n,n)/(n+1) - 1) \\ G. C. Greubel, Aug 12 2019
-
[2*catalan_number(n) -1 for n in (0..25)] # G. C. Greubel, Aug 12 2019
A085880
Triangle T(n,k) read by rows: multiply row n of Pascal's triangle (A007318) by the n-th Catalan number (A000108).
Original entry on oeis.org
1, 1, 1, 2, 4, 2, 5, 15, 15, 5, 14, 56, 84, 56, 14, 42, 210, 420, 420, 210, 42, 132, 792, 1980, 2640, 1980, 792, 132, 429, 3003, 9009, 15015, 15015, 9009, 3003, 429, 1430, 11440, 40040, 80080, 100100, 80080, 40040, 11440, 1430, 4862, 43758, 175032, 408408, 612612, 612612, 408408, 175032, 43758, 4862
Offset: 0
Triangle starts:
[ 1] 1;
[ 2] 1, 1;
[ 3] 2, 4, 2;
[ 4] 5, 15, 15, 5;
[ 5] 14, 56, 84, 56, 14;
[ 6] 42, 210, 420, 420, 210, 42;
[ 7] 132, 792, 1980, 2640, 1980, 792, 132;
[ 8] 429, 3003, 9009, 15015, 15015, 9009, 3003, 429;
[ 9] 1430, 11440, 40040, 80080, 100100, 80080, 40040, 11440, 1430;
[10] 4862, 43758, 175032, 408408, 612612, 612612, 408408, 175032, 43758, 4862;
...
-
Flat(List([0..10], n-> List([0..n], k-> Binomial(n,k)*Binomial(2*n,n)/( n+1) ))); # G. C. Greubel, Feb 07 2020
-
[Binomial(n,k)*Catalan(n): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 07 2020
-
seq(seq(binomial(n, k)*binomial(2*n, n)/(n+1), k = 0..n), n = 0..10); # G. C. Greubel, Feb 07 2020
-
Table[Binomial[n, k]*CatalanNumber[n], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 07 2020 *)
-
tabl(nn) = {for (n=0, nn, c = binomial(2*n,n)/(n+1); for (k=0, n, print1(c*binomial(n, k), ", ");); print(););} \\ Michel Marcus, Apr 09 2015
-
[[binomial(n,k)*catalan_number(n) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Feb 07 2020
A131429
Triangle read by rows: T(n,k) = C(n) + C(k) - 1 where C(n) = A000108(n) are the Catalan numbers, 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 5, 5, 6, 9, 14, 14, 15, 18, 27, 42, 42, 43, 46, 55, 83, 132, 132, 133, 136, 145, 173, 263, 429, 429, 430, 433, 442, 470, 560, 857, 1430, 1430, 1431, 1434, 1443, 1471, 1561, 1858, 2859, 4862, 4862, 4863, 4866, 4875, 4903, 4993, 5290, 6291, 9723
Offset: 0
First few rows of the triangle are:
1;
1, 1;
2, 2, 3;
5, 5, 6, 9;
14, 14, 15, 18, 27;
42, 42, 43, 46, 55, 83;
...
-
T(n,k)=if(k<=n, binomial(2*n,n)/(n+1) + binomial(2*k,k)/(k+1) - 1, 0) \\ Andrew Howroyd, Sep 01 2018
A372001
Array read by descending antidiagonals: A family of generalized Catalan numbers generated by a generalization of Deléham's Delta operator.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 14, 15, 5, 1, 1, 42, 105, 61, 9, 1, 1, 132, 945, 1385, 297, 17, 1, 1, 429, 10395, 50521, 24273, 1585, 33, 1, 1, 1430, 135135, 2702765, 3976209, 485729, 8865, 65, 1, 1, 4862, 2027025, 199360981, 1145032281, 372281761, 10401345, 50881, 129, 1, 1
Offset: 1
Array starts:
[0] 1, 1, 2, 5, 14, 42, 132, ...
[1] 1, 1, 3, 15, 105, 945, 10395, ...
[2] 1, 1, 5, 61, 1385, 50521, 2702765, ...
[3] 1, 1, 9, 297, 24273, 3976209, 1145032281, ...
[4] 1, 1, 17, 1585, 485729, 372281761, 601378506737, ...
[5] 1, 1, 33, 8865, 10401345, 38103228225, 352780110115425, ...
[6] 1, 1, 65, 50881, 231455105, 4104215813761, 220579355255364545, ...
.
Seen as a triangle T(n, k) = A(k, n - k):
[0] [ 1]
[1] [ 1, 1]
[2] [ 2, 1, 1]
[3] [ 5, 3, 1, 1]
[4] [ 14, 15, 5, 1, 1]
[5] [ 42, 105, 61, 9, 1, 1]
[6] [132, 945, 1385, 297, 17, 1, 1]
[7] [429, 10395, 50521, 24273, 1585, 33, 1, 1]
By ascending antidiagonals:
A290569.
-
def GeneralizedDelehamDelta(F, dim, seq=True): # The algorithm.
ring = PolynomialRing(ZZ, 'x')
x = ring.gen()
A = [sum(F[j](k) * x^j for j in range(len(F))) for k in range(dim)]
C = [ring(0)] + [ring(1) for i in range(dim)]
for k in range(dim):
for n in range(k, 0, -1):
C[n] = C[n-1] + C[n+1] * A[n-1]
yield list(C[1])[-1] if seq else list(C[1])
def F(n): # Define the input functions.
def p0(): return lambda n: pow(n, n^0)
def p(k): return lambda n: pow(n + 1, k)
return [p0()] + [p(k) for k in range(n + 1)]
def A(n, dim): # Return only the main diagonal of the triangle.
return [r for r in GeneralizedDelehamDelta(F(n), dim)]
for n in range(7): print(A(n, 7))
def T(n, dim): # Return the regularized triangle.
R = GeneralizedDelehamDelta(F(n), dim, False)
return [[r[k] for k in range(0, len(r), n + 1)] for r in R]
for n in range(0, 4):
for row in T(n, 6): print(row)
Original entry on oeis.org
1, 2, 7, 25, 88, 311, 1114, 4050, 14917, 55528, 208459, 787920, 2994655, 11433998, 43824437, 168520201, 649840740, 2512011359, 9731179138, 37768570827, 146833956266, 571711568905, 2229035221824, 8701426599353, 34005503702176, 133030452858279, 520905732440782
Offset: 0
a(3) = 25 = sum of row 3 terms of triangle A131429: (5 + 5 + 6 + 9).
-
a(n)={binomial(2*n,n) - n - 1 + sum(k=0, n, binomial(2*k,k)/(k+1))} \\ Andrew Howroyd, Aug 28 2018
Showing 1-6 of 6 results.
Comments