cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131464 a(n) = 4*n^3 - 3*n^2 + 2*n - 1.

Original entry on oeis.org

2, 23, 86, 215, 434, 767, 1238, 1871, 2690, 3719, 4982, 6503, 8306, 10415, 12854, 15647, 18818, 22391, 26390, 30839, 35762, 41183, 47126, 53615, 60674, 68327, 76598, 85511, 95090, 105359, 116342, 128063, 140546, 153815, 167894, 182807, 198578, 215231, 232790
Offset: 1

Views

Author

Mohammad K. Azarian, Jul 26 2007

Keywords

Crossrefs

Programs

  • Magma
    [4*n^3-3*n^2+2*n-1: n in [1..40]]; // Vincenzo Librandi, Feb 12 2013
    
  • Magma
    I:=[2, 23, 86, 215]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Feb 12 2013
  • Mathematica
    CoefficientList[Series[(2 + 15 x + 6 x^2 + x^3)/(1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2013 *)
    Table[4n^3-3n^2+2n-1,{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{2,23,86,215},40] (* Harvey P. Dale, May 05 2018 *)

Formula

From Vincenzo Librandi, Feb 12 2013: (Start)
G.f.: x*(2 + 15*x + 6*x^2 + x^3)/(1 - x)^4.
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). (End)
E.g.f.: 1 - exp(x)*(1 - 3*x - 9*x^2 - 4*x^3). - Stefano Spezia, Dec 06 2024