A131477 a(n) = ceiling(n^3/3).
0, 1, 3, 9, 22, 42, 72, 115, 171, 243, 334, 444, 576, 733, 915, 1125, 1366, 1638, 1944, 2287, 2667, 3087, 3550, 4056, 4608, 5209, 5859, 6561, 7318, 8130, 9000, 9931, 10923, 11979, 13102, 14292, 15552, 16885, 18291, 19773, 21334, 22974
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (3, -3, 2, -3, 3, -1).
Programs
-
Magma
[Ceiling(n^3/3) : n in [0..50]]; // Vincenzo Librandi, Oct 01 2011
-
Mathematica
Ceiling[Range[0,50]^3/3] (* Harvey P. Dale, Oct 19 2013 *)
Formula
From R. J. Mathar, Dec 19 2008: (Start)
G.f.: x*(1 + 3*x^2 + 2*x^3)/((1 - x)^4*(1 + x + x^2)).
a(n) = floor(n^3/3 + 2/3). - Bruno Berselli, Dec 21 2017