A131518 Number of partitions of the graph G_n (defined below) into "strokes".
2, 6, 14, 122, 362, 5282, 20582, 397154, 2027090, 46177922, 303147902, 7699478162, 63517159994, 1745540360930, 17676592058582, 517137940132802, 6290714838241442, 194139271606482434, 2782486941099788270, 90105513853333901042, 1495993248737211995402, 50671468195931300884322
Offset: 1
Keywords
Examples
G_2 : o=o, two edges exist between v_1 and v_2.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..440
- R. J. Mathar, Explanation of the Alekseyev formula
Programs
-
Mathematica
f[n_, k_]:= If[EvenQ[n-k], Binomial[(n+k)/2, k], 0]; A088009[n_]:= n!*Sum[f[n-1, k-1]/k!, {k, 0, n}]; A131518[n_]:= If[EvenQ[n], 2*A088009[n] + n!*(n/2 +1), 2*A088009[n]]; Table[A131518[n], {n,1,30}] (* G. C. Greubel, Feb 14 2021 *)
-
Sage
def f(n, k): return binomial((n+k)/2, k) if (n-k)%2==0 else 0 def A088009(n): return factorial(n)*sum(f(n-1, k-1)/factorial(k) for k in (0..n)) def A131518(n): return 2*A088009(n) + (n/2 +1)*factorial(n) if (n%2==0) else 2*A088009(n) [A131518(n) for n in (1..30)] # G. C. Greubel, Feb 14 2021
Formula
For odd n, a(n)=2*A088009(n); for even n, a(n)=2*A088009(n)+n!*(n/2+1). The first term stands for partitions with paths starting and ending in different vertices. The second term (that exists only for even n) stands for partitions with paths starting and ending at the same vertex (there are at most 2 such paths starting and ending in v_1 and v_2 respectively, each path consists of even number of edges). - Max Alekseyev, Sep 29 2007
Extensions
More terms from Max Alekseyev, Sep 29 2007
Comments