cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131729 Period 4: repeat [0, 1, -1, 1].

Original entry on oeis.org

0, 1, -1, 1, 0, 1, -1, 1, 0, 1, -1, 1, 0, 1, -1, 1, 0, 1, -1, 1, 0, 1, -1, 1, 0, 1, -1, 1, 0, 1, -1, 1, 0, 1, -1, 1, 0, 1, -1, 1, 0, 1, -1, 1, 0, 1, -1, 1, 0, 1, -1, 1, 0, 1, -1, 1, 0, 1, -1, 1, 0, 1, -1, 1, 0, 1, -1, 1, 0, 1, -1, 1, 0, 1, -1, 1, 0, 1, -1, 1, 0, 1, -1, 1, 0, 1, -1, 1, 0, 1, -1, 1, 0, 1, -1, 1, 0, 1, -1, 1, 0, 1, -1, 1, 0, 1, -1, 1, 0, 1, -1, 1, 0, 1
Offset: 0

Views

Author

Paul Curtz, Sep 17 2007

Keywords

Examples

			G.f. = x - x^2 + x^3 + x^5 - x^6 + x^7 + x^9 - x^10 + x^11 + x^13 - x^14 + x^15 + ...
		

Crossrefs

Cf. A081360, A209635 (Dirichlet inverse), A166486 (absolute values).

Programs

Formula

From Michael Somos, Apr 10 2011: (Start)
Expansion of x * (1 - x) * (1 - x^6) / ((1 - x^2) * (1 - x^3) * (1 - x^4)) = (x - x^2 + x^3) / (1 - x^4) in powers of x.
Euler transform of length 6 sequence [-1, 1, 1, 1, 0, -1].
Moebius transform is length 4 sequence [1, -2, 0, 1].
a(n) is multiplicative with a(2) = -1, a(2^e) = 0 if e>1, a(p^e)=1 if p>2.
E.g.f.: sinh(x) + (cos(x) - cosh(x)) / 2. a(n) = a(-n) = a(n+4) for all n in Z. a(2*n + 1) = 0. a(4*n + 2) = -1. a(4*n) = 0. (End)
G.f.: A081360 = Product_{k>0} (1 - x^k)^a(k). - Michael Somos, Feb 06 2012
G.f.: x*(1-x+x^2)/ ((1-x)*(x+1)*(x^2+1)). - R. J. Mathar, Nov 15 2007
a(n) = 1/4+(1/2)*cos(1/2*Pi*n)+3/4*(-1)^(1+n). - R. J. Mathar, Nov 15 2007
Dirichlet g.f. (1-2^(-s))^2*zeta(s). - R. J. Mathar, Apr 14 2011