cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A131851 Real part of the function z(n)=Sum(d(k)*i^k: d as in n=Sum(d(k)*2^k), i=sqrt(-1)).

Original entry on oeis.org

0, 1, 0, 1, -1, 0, -1, 0, 0, 1, 0, 1, -1, 0, -1, 0, 1, 2, 1, 2, 0, 1, 0, 1, 1, 2, 1, 2, 0, 1, 0, 1, 0, 1, 0, 1, -1, 0, -1, 0, 0, 1, 0, 1, -1, 0, -1, 0, 1, 2, 1, 2, 0, 1, 0, 1, 1, 2, 1, 2, 0, 1, 0, 1, -1, 0, -1, 0, -2, -1, -2, -1, -1, 0, -1, 0, -2, -1, -2, -1, 0, 1, 0, 1, -1, 0, -1, 0, 0, 1, 0, 1, -1, 0, -1, 0, -1, 0, -1, 0, -2, -1, -2, -1, -1, 0, -1, 0, -2, -1, -2
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 22 2007

Keywords

Comments

A131852(n) = Im(z(n));
z(A000079(n))=(A056594(n),A056594(n+3)); a(A000079(n))=A056594(n);
a(A131854(n))=0; a(A131861(n))>0; a(A131859(n))=1; a(A131863(n))<0;
z(A131853(n))=(0,0); z(A131856(n))=(0,1); z(A131858(n))=(1,0); z(A131860(n))=(1,1);
for n>0: a(A131865(n))=n and ABS(a(m))A131865(n).

Crossrefs

Cf. A007088.

Programs

  • Mathematica
    z[0] = 0; z[n_] := z[n] = z[Floor[n/2]]*I + Mod[n, 2]; Table[z[n] // Re, {n, 0, 110}] (* Jean-François Alcover, Jul 03 2013 *)

Formula

z(n) = if n=0 then (0, 0) else z(floor(n/2))*(0, 1) + (n mod 2, 0), complex multiplication.

A131853 Numbers m such that z(m)=(0,0) with z as defined in A131851.

Original entry on oeis.org

0, 5, 10, 15, 20, 30, 40, 45, 60, 65, 75, 80, 85, 90, 95, 105, 120, 125, 130, 135, 150, 160, 165, 170, 175, 180, 190, 195, 210, 215, 225, 235, 240, 245, 250, 255, 260, 270, 300, 320, 325, 330, 335, 340, 350, 360, 365, 380, 390, 420, 430, 450, 455, 470, 480, 485
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 22 2007

Keywords

Comments

Intersection of A131854 and A131855: A131851(a(n))=0, A131852(a(n))=0;
conjecture: a(n) mod 5 = 0.

Crossrefs

Programs

  • Mathematica
    z[n_] := z[n] = If[n == 0, 0, z[Floor[n/2]] I + Mod[n, 2]];
    Flatten[Position[Table[z[n], {n, 0, 500}], 0] - 1] (* Jean-François Alcover, Oct 12 2021 *)

A131856 Numbers m such that z(m)=(0,1) with z as defined in A131851.

Original entry on oeis.org

2, 7, 22, 32, 37, 42, 47, 52, 62, 67, 82, 87, 97, 107, 112, 117, 122, 127, 162, 167, 182, 227, 242, 247, 262, 292, 302, 322, 327, 342, 352, 357, 362, 367, 372, 382, 422, 482, 487, 502, 512, 517, 522, 527, 532, 542, 552, 557, 572, 577, 587, 592, 597, 602, 607
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 22 2007

Keywords

Comments

Intersection of A131854 and A131857: A131851(a(n))=0, A131852(a(n))=1.

Crossrefs

A131859 Numbers m such that A131851(m) = 1.

Original entry on oeis.org

1, 3, 9, 11, 16, 18, 21, 23, 24, 26, 29, 31, 33, 35, 41, 43, 48, 50, 53, 55, 56, 58, 61, 63, 81, 83, 89, 91, 113, 115, 121, 123, 129, 131, 137, 139, 144, 146, 149, 151, 152, 154, 157, 159, 161, 163, 169, 171, 176, 178, 181, 183, 184, 186, 189, 191, 209, 211, 217
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 22 2007

Keywords

Crossrefs

A131860 Numbers m such that z(m)=(1,1) with z as defined in A131851.

Original entry on oeis.org

3, 18, 23, 33, 43, 48, 53, 58, 63, 83, 113, 123, 163, 178, 183, 243, 258, 263, 278, 288, 293, 298, 303, 308, 318, 323, 338, 343, 353, 363, 368, 373, 378, 383, 418, 423, 438, 483, 498, 503, 513, 523, 528, 533, 538, 543, 553, 568, 573, 593, 603, 633, 643, 658
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 22 2007

Keywords

Comments

Intersection of A131857 and A131859: A131851(a(n))=1, A131852(a(n))=1.

Crossrefs

A330714 For any n >= 0 with binary expansion Sum_{k=0..w} b_k * 2^k, let h(n) = Sum_{k=0..w} b_k * i^k (where i denotes the imaginary unit); a(n) is the square of the modulus of h(n).

Original entry on oeis.org

0, 1, 1, 2, 1, 0, 2, 1, 1, 2, 0, 1, 2, 1, 1, 0, 1, 4, 2, 5, 0, 1, 1, 2, 2, 5, 1, 4, 1, 2, 0, 1, 1, 2, 4, 5, 2, 1, 5, 4, 0, 1, 1, 2, 1, 0, 2, 1, 2, 5, 5, 8, 1, 2, 4, 5, 1, 4, 2, 5, 0, 1, 1, 2, 1, 0, 2, 1, 4, 1, 5, 2, 2, 1, 1, 0, 5, 2, 4, 1, 0, 1, 1, 2, 1
Offset: 0

Views

Author

Seiichi Manyama, Dec 27 2019

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 0; a[n_] := a[n] = a[Floor[n/2]]*I + Mod[n, 2]; Table[Abs[a[n]]^2, {n, 0, 100}] (* Amiram Eldar, May 06 2021, after Jean-François Alcover at A131851 *)
  • PARI
    {a(n) = my(d=Vecrev(digits(n, 2))); norm(sum(k=1, #d, d[k]*I^k))}

Formula

a(n) = A131851(n)^2 + A131852(n)^2.
Showing 1-6 of 6 results.