cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A131852 Imaginary part of the function z defined in A131851.

Original entry on oeis.org

0, 0, 1, 1, 0, 0, 1, 1, -1, -1, 0, 0, -1, -1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, -1, -1, 0, 0, -1, -1, 0, 0, 1, 1, 2, 2, 1, 1, 2, 2, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, -1, -1, 0, 0, -1, -1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, -1, -1, 0, 0, -1, -1, 0, 0, 1, 1, 2, 2, 1, 1, 2, 2, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 0
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 22 2007

Keywords

Comments

a(A000079(n)) = A056594(n+3);
a(A131855(n)) = 0; a(A131862(n)) > 0; a(A131857(n)) = 1; a(A131864(n)) < 0;
for n > 0: a(A098704(n+1)) = n and abs(a(m)) < n for m < A098704(n+1).

Programs

  • Mathematica
    z[0] = 0; z[n_] := z[n] = z[Floor[n/2]]*I + Mod[n, 2]; Table[z[n] // Im, {n, 0, 120}] (* Jean-François Alcover, Mar 02 2019 *)

A131853 Numbers m such that z(m)=(0,0) with z as defined in A131851.

Original entry on oeis.org

0, 5, 10, 15, 20, 30, 40, 45, 60, 65, 75, 80, 85, 90, 95, 105, 120, 125, 130, 135, 150, 160, 165, 170, 175, 180, 190, 195, 210, 215, 225, 235, 240, 245, 250, 255, 260, 270, 300, 320, 325, 330, 335, 340, 350, 360, 365, 380, 390, 420, 430, 450, 455, 470, 480, 485
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 22 2007

Keywords

Comments

Intersection of A131854 and A131855: A131851(a(n))=0, A131852(a(n))=0;
conjecture: a(n) mod 5 = 0.

Crossrefs

Programs

  • Mathematica
    z[n_] := z[n] = If[n == 0, 0, z[Floor[n/2]] I + Mod[n, 2]];
    Flatten[Position[Table[z[n], {n, 0, 500}], 0] - 1] (* Jean-François Alcover, Oct 12 2021 *)

A131854 Numbers m such that A131851(m) = 0.

Original entry on oeis.org

0, 2, 5, 7, 8, 10, 13, 15, 20, 22, 28, 30, 32, 34, 37, 39, 40, 42, 45, 47, 52, 54, 60, 62, 65, 67, 73, 75, 80, 82, 85, 87, 88, 90, 93, 95, 97, 99, 105, 107, 112, 114, 117, 119, 120, 122, 125, 127, 128, 130, 133, 135, 136, 138, 141, 143, 148, 150, 156, 158, 160, 162, 165
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 22 2007

Keywords

Crossrefs

Programs

  • Maple
    Z:= proc(n) option remember;
    I*procname(floor(n/2))+(n mod 2)
    end proc:
    Z(0):= 0:
    select(Re@Z=0, [$0..1000]); # Robert Israel, Dec 18 2017
  • Mathematica
    z[0] = 0; z[n_] := z[n] = z[Floor[n/2]]*I + Mod[n, 2]; Select[Range[0, 200], Re[z[#]] == 0&] (* Jean-François Alcover, Jan 31 2018 *)
  • PARI
    isok(n) = {d = Vecrev(binary(n)); real(sum(k=1, #d, d[k]*I^(k-1))) == 0;} \\ Michel Marcus, Jan 31 2018

A131856 Numbers m such that z(m)=(0,1) with z as defined in A131851.

Original entry on oeis.org

2, 7, 22, 32, 37, 42, 47, 52, 62, 67, 82, 87, 97, 107, 112, 117, 122, 127, 162, 167, 182, 227, 242, 247, 262, 292, 302, 322, 327, 342, 352, 357, 362, 367, 372, 382, 422, 482, 487, 502, 512, 517, 522, 527, 532, 542, 552, 557, 572, 577, 587, 592, 597, 602, 607
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 22 2007

Keywords

Comments

Intersection of A131854 and A131857: A131851(a(n))=0, A131852(a(n))=1.

Crossrefs

A131858 Numbers m such that z(m)=(1,0) with z as defined in A131851.

Original entry on oeis.org

1, 11, 16, 21, 26, 31, 41, 56, 61, 81, 91, 121, 131, 146, 151, 161, 171, 176, 181, 186, 191, 211, 241, 251, 256, 261, 266, 271, 276, 286, 296, 301, 316, 321, 331, 336, 341, 346, 351, 361, 376, 381, 386, 391, 406, 416, 421, 426, 431, 436, 446, 451, 466, 471
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 22 2007

Keywords

Comments

Intersection of A131855 and A131859: A131851(a(n))=1, A131852(a(n))=0.

Crossrefs

A131859 Numbers m such that A131851(m) = 1.

Original entry on oeis.org

1, 3, 9, 11, 16, 18, 21, 23, 24, 26, 29, 31, 33, 35, 41, 43, 48, 50, 53, 55, 56, 58, 61, 63, 81, 83, 89, 91, 113, 115, 121, 123, 129, 131, 137, 139, 144, 146, 149, 151, 152, 154, 157, 159, 161, 163, 169, 171, 176, 178, 181, 183, 184, 186, 189, 191, 209, 211, 217
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 22 2007

Keywords

Crossrefs

A131860 Numbers m such that z(m)=(1,1) with z as defined in A131851.

Original entry on oeis.org

3, 18, 23, 33, 43, 48, 53, 58, 63, 83, 113, 123, 163, 178, 183, 243, 258, 263, 278, 288, 293, 298, 303, 308, 318, 323, 338, 343, 353, 363, 368, 373, 378, 383, 418, 423, 438, 483, 498, 503, 513, 523, 528, 533, 538, 543, 553, 568, 573, 593, 603, 633, 643, 658
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 22 2007

Keywords

Comments

Intersection of A131857 and A131859: A131851(a(n))=1, A131852(a(n))=1.

Crossrefs

A131861 Numbers m such that A131851(m) > 0.

Original entry on oeis.org

1, 3, 9, 11, 16, 17, 18, 19, 21, 23, 24, 25, 26, 27, 29, 31, 33, 35, 41, 43, 48, 49, 50, 51, 53, 55, 56, 57, 58, 59, 61, 63, 81, 83, 89, 91, 113, 115, 121, 123, 129, 131, 137, 139, 144, 145, 146, 147, 149, 151, 152, 153, 154, 155, 157, 159, 161, 163, 169, 171, 176
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 22 2007

Keywords

Crossrefs

A131863 Numbers m such that A131851(m) < 0.

Original entry on oeis.org

4, 6, 12, 14, 36, 38, 44, 46, 64, 66, 68, 69, 70, 71, 72, 74, 76, 77, 78, 79, 84, 86, 92, 94, 96, 98, 100, 101, 102, 103, 104, 106, 108, 109, 110, 111, 116, 118, 124, 126, 132, 134, 140, 142, 164, 166, 172, 174, 192, 194, 196, 197, 198, 199, 200, 202, 204, 205, 206
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 22 2007

Keywords

Crossrefs

A131865 Partial sums of powers of 16.

Original entry on oeis.org

1, 17, 273, 4369, 69905, 1118481, 17895697, 286331153, 4581298449, 73300775185, 1172812402961, 18764998447377, 300239975158033, 4803839602528529, 76861433640456465, 1229782938247303441, 19676527011956855057, 314824432191309680913, 5037190915060954894609
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 22 2007

Keywords

Comments

16 = 2^4 is the growth measure for the Jacobsthal spiral (compare with phi^4 for the Fibonacci spiral). - Paul Barry, Mar 07 2008
Second quadrisection of A115451. - Paul Curtz, May 21 2008
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=16, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n >= 1, a(n-1) = det(A). - Milan Janjic, Feb 21 2010
Partial sums are in A014899. Also, the sequence is related to A014931 by A014931(n+1) = (n+1)*a(n) - Sum_{i=0..n-1} a(i) for n>0. - Bruno Berselli, Nov 07 2012
a(n) is the total number of holes in a certain box fractal (start with 16 boxes, 1 hole) after n iterations. See illustration in links. - Kival Ngaokrajang, Jan 28 2015
Except for 1 and 17, all terms are Brazilian repunits numbers in base 16, and so belong to A125134. All terms >= 273 are composite because a(n) = ((4^(n+1) + 1) * (4^(n+1) - 1))/15. - Bernard Schott, Jun 06 2017
The sequence in binary is 1, 10001, 100010001, 1000100010001, 10001000100010001, ... cf. Plouffe link, A330135. - Frank Ellermann, Mar 05 2020

Examples

			a(3) = 1 + 16 + 256 + 4096 = 4369 = in binary: 1000100010001.
a(4) = (16^5 - 1)/15 = (4^5 + 1) * (4^5 - 1)/15 = 1025 * 1023/15 = 205 * 341 = 69905 = 11111_16. - _Bernard Schott_, Jun 06 2017
		

Crossrefs

Programs

Formula

a(n) = if n=0 then 1 else a(n-1) + A001025(n).
for n > 0: A131851(a(n)) = n and abs(A131851(m)) < n for m < a(n).
a(n) = A098704(n+2)/2.
a(n) = (16^(n+1) - 1)/15. - Bernard Schott, Jun 06 2017
a(n) = (A001025(n+1) - 1)/15.
a(n) = 16*a(n-1) + 1. - Paul Curtz, May 20 2008
G.f.: 1 / ( (16*x-1)*(x-1) ). - R. J. Mathar, Feb 06 2011
E.g.f.: exp(x)*(16*exp(15*x) - 1)/15. - Stefano Spezia, Mar 06 2020
Showing 1-10 of 11 results. Next