cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A131851 Real part of the function z(n)=Sum(d(k)*i^k: d as in n=Sum(d(k)*2^k), i=sqrt(-1)).

Original entry on oeis.org

0, 1, 0, 1, -1, 0, -1, 0, 0, 1, 0, 1, -1, 0, -1, 0, 1, 2, 1, 2, 0, 1, 0, 1, 1, 2, 1, 2, 0, 1, 0, 1, 0, 1, 0, 1, -1, 0, -1, 0, 0, 1, 0, 1, -1, 0, -1, 0, 1, 2, 1, 2, 0, 1, 0, 1, 1, 2, 1, 2, 0, 1, 0, 1, -1, 0, -1, 0, -2, -1, -2, -1, -1, 0, -1, 0, -2, -1, -2, -1, 0, 1, 0, 1, -1, 0, -1, 0, 0, 1, 0, 1, -1, 0, -1, 0, -1, 0, -1, 0, -2, -1, -2, -1, -1, 0, -1, 0, -2, -1, -2
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 22 2007

Keywords

Comments

A131852(n) = Im(z(n));
z(A000079(n))=(A056594(n),A056594(n+3)); a(A000079(n))=A056594(n);
a(A131854(n))=0; a(A131861(n))>0; a(A131859(n))=1; a(A131863(n))<0;
z(A131853(n))=(0,0); z(A131856(n))=(0,1); z(A131858(n))=(1,0); z(A131860(n))=(1,1);
for n>0: a(A131865(n))=n and ABS(a(m))A131865(n).

Crossrefs

Cf. A007088.

Programs

  • Mathematica
    z[0] = 0; z[n_] := z[n] = z[Floor[n/2]]*I + Mod[n, 2]; Table[z[n] // Re, {n, 0, 110}] (* Jean-François Alcover, Jul 03 2013 *)

Formula

z(n) = if n=0 then (0, 0) else z(floor(n/2))*(0, 1) + (n mod 2, 0), complex multiplication.

A131854 Numbers m such that A131851(m) = 0.

Original entry on oeis.org

0, 2, 5, 7, 8, 10, 13, 15, 20, 22, 28, 30, 32, 34, 37, 39, 40, 42, 45, 47, 52, 54, 60, 62, 65, 67, 73, 75, 80, 82, 85, 87, 88, 90, 93, 95, 97, 99, 105, 107, 112, 114, 117, 119, 120, 122, 125, 127, 128, 130, 133, 135, 136, 138, 141, 143, 148, 150, 156, 158, 160, 162, 165
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 22 2007

Keywords

Crossrefs

Programs

  • Maple
    Z:= proc(n) option remember;
    I*procname(floor(n/2))+(n mod 2)
    end proc:
    Z(0):= 0:
    select(Re@Z=0, [$0..1000]); # Robert Israel, Dec 18 2017
  • Mathematica
    z[0] = 0; z[n_] := z[n] = z[Floor[n/2]]*I + Mod[n, 2]; Select[Range[0, 200], Re[z[#]] == 0&] (* Jean-François Alcover, Jan 31 2018 *)
  • PARI
    isok(n) = {d = Vecrev(binary(n)); real(sum(k=1, #d, d[k]*I^(k-1))) == 0;} \\ Michel Marcus, Jan 31 2018

A131858 Numbers m such that z(m)=(1,0) with z as defined in A131851.

Original entry on oeis.org

1, 11, 16, 21, 26, 31, 41, 56, 61, 81, 91, 121, 131, 146, 151, 161, 171, 176, 181, 186, 191, 211, 241, 251, 256, 261, 266, 271, 276, 286, 296, 301, 316, 321, 331, 336, 341, 346, 351, 361, 376, 381, 386, 391, 406, 416, 421, 426, 431, 436, 446, 451, 466, 471
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 22 2007

Keywords

Comments

Intersection of A131855 and A131859: A131851(a(n))=1, A131852(a(n))=0.

Crossrefs

A131860 Numbers m such that z(m)=(1,1) with z as defined in A131851.

Original entry on oeis.org

3, 18, 23, 33, 43, 48, 53, 58, 63, 83, 113, 123, 163, 178, 183, 243, 258, 263, 278, 288, 293, 298, 303, 308, 318, 323, 338, 343, 353, 363, 368, 373, 378, 383, 418, 423, 438, 483, 498, 503, 513, 523, 528, 533, 538, 543, 553, 568, 573, 593, 603, 633, 643, 658
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 22 2007

Keywords

Comments

Intersection of A131857 and A131859: A131851(a(n))=1, A131852(a(n))=1.

Crossrefs

A131861 Numbers m such that A131851(m) > 0.

Original entry on oeis.org

1, 3, 9, 11, 16, 17, 18, 19, 21, 23, 24, 25, 26, 27, 29, 31, 33, 35, 41, 43, 48, 49, 50, 51, 53, 55, 56, 57, 58, 59, 61, 63, 81, 83, 89, 91, 113, 115, 121, 123, 129, 131, 137, 139, 144, 145, 146, 147, 149, 151, 152, 153, 154, 155, 157, 159, 161, 163, 169, 171, 176
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 22 2007

Keywords

Crossrefs

A131863 Numbers m such that A131851(m) < 0.

Original entry on oeis.org

4, 6, 12, 14, 36, 38, 44, 46, 64, 66, 68, 69, 70, 71, 72, 74, 76, 77, 78, 79, 84, 86, 92, 94, 96, 98, 100, 101, 102, 103, 104, 106, 108, 109, 110, 111, 116, 118, 124, 126, 132, 134, 140, 142, 164, 166, 172, 174, 192, 194, 196, 197, 198, 199, 200, 202, 204, 205, 206
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 22 2007

Keywords

Crossrefs

Showing 1-6 of 6 results.