A131895 a(n) = (n + 2)*(5*n + 1)/2.
1, 9, 22, 40, 63, 91, 124, 162, 205, 253, 306, 364, 427, 495, 568, 646, 729, 817, 910, 1008, 1111, 1219, 1332, 1450, 1573, 1701, 1834, 1972, 2115, 2263, 2416, 2574, 2737, 2905, 3078, 3256, 3439, 3627, 3820, 4018, 4221, 4429, 4642, 4860, 5083, 5311, 5544
Offset: 0
Examples
a(2) = 22 = sum of row 2 terms of triangle A131894: (11 + 6 + 5). a(2) = 22 = (1, 2, 1) dot (1, 8, 5) = (1 + 16 + 5).
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Maple
A131895:=n->(n+2)*(5*n+1)/2; seq(A131895(n), n=0..50); # Wesley Ivan Hurt, Mar 26 2014
-
Mathematica
LinearRecurrence[{3,-3,1},{1,9,22},50] (* Harvey P. Dale, Sep 11 2015 *)
-
PARI
a(n)=(n+2)*(5*n+1)/2 \\ Charles R Greathouse IV, Jun 17 2017
Formula
a(n) = a(n-1) + 5*n + 3 (with a(0)=1). - Vincenzo Librandi, Nov 23 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=1, a(1)=9, a(2)=22. - Harvey P. Dale, Sep 11 2015
From Elmo R. Oliveira, Oct 22 2024: (Start)
G.f.: (1 + 6*x - 2*x^2)/(1 - x)^3.
E.g.f.: (1 + 8*x + 5*x^2/2)*exp(x). (End)
Sum_{n>=0} 1/a(n) = (2 + sqrt(1+2/sqrt(5))*Pi + sqrt(5)*log(phi) + 5*log(5)/2)/9, where phi is the golden ratio (A001622). - Amiram Eldar, Jun 02 2025
Extensions
More terms from Vladimir Joseph Stephan Orlovsky, Dec 04 2008
Simpler definition from Wesley Ivan Hurt, Mar 26 2014
Comments