cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131924 Row sums of triangle A131923.

Original entry on oeis.org

1, 4, 10, 20, 36, 62, 106, 184, 328, 602, 1134, 2180, 4252, 8374, 16594, 33008, 65808, 131378, 262486, 524668, 1048996, 2097614, 4194810, 8389160, 16777816, 33555082, 67109566, 134218484, 268436268, 536871782, 1073742754, 2147484640
Offset: 0

Views

Author

Gary W. Adamson, Jul 29 2007

Keywords

Examples

			a(4) = 36 = sum of terms in row 4 of triangle A131923: (5 + 8 + 10 + 8 + 5).
a(4) = 36 = (1, 4, 6, 4, 1) dot (1, 3, 3, 1, 1) = (1 + 12 + 18 + 4 + 1).
		

Crossrefs

Cf. A131923.

Programs

  • GAP
    a:=List(List([0..32],n->List([0..n],k->Binomial(n,k)+n)),Sum); # Muniru A Asiru, Jul 17 2018
    
  • Mathematica
    Table[2^n + n^2 + n, {n, 0, 5!}] (* Vladimir Joseph Stephan Orlovsky, May 07 2010 *)
    LinearRecurrence[{5,-9,7,-2},{1,4,10,20},40] (* Harvey P. Dale, Jul 22 2021 *)
  • PARI
    Vec((1 - x - x^2 - x^3) / ((1 - x)^3*(1 - 2*x)) + O(x^40)) \\ Colin Barker, Jul 18 2018

Formula

Binomial transform of (1, 3, 3, 1, 1, 1, ...).
a(n) = 2^n + n^2 + n. - Michel Marcus, Jul 18 2018
From Colin Barker, Jul 18 2018: (Start)
G.f.: (1 - x - x^2 - x^3) / ((1 - x)^3*(1 - 2*x)).
a(n) = 5*a(n-1) - 9*a(n-2) + 7*a(n-3) - 2*a(n-4) for n>3.
(End)

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, May 07 2010