A131924 Row sums of triangle A131923.
1, 4, 10, 20, 36, 62, 106, 184, 328, 602, 1134, 2180, 4252, 8374, 16594, 33008, 65808, 131378, 262486, 524668, 1048996, 2097614, 4194810, 8389160, 16777816, 33555082, 67109566, 134218484, 268436268, 536871782, 1073742754, 2147484640
Offset: 0
Examples
a(4) = 36 = sum of terms in row 4 of triangle A131923: (5 + 8 + 10 + 8 + 5). a(4) = 36 = (1, 4, 6, 4, 1) dot (1, 3, 3, 1, 1) = (1 + 12 + 18 + 4 + 1).
Links
- Muniru A Asiru, Table of n, a(n) for n = 0..600
- Index entries for linear recurrences with constant coefficients, signature (5,-9,7,-2).
Crossrefs
Cf. A131923.
Programs
-
GAP
a:=List(List([0..32],n->List([0..n],k->Binomial(n,k)+n)),Sum); # Muniru A Asiru, Jul 17 2018
-
Mathematica
Table[2^n + n^2 + n, {n, 0, 5!}] (* Vladimir Joseph Stephan Orlovsky, May 07 2010 *) LinearRecurrence[{5,-9,7,-2},{1,4,10,20},40] (* Harvey P. Dale, Jul 22 2021 *)
-
PARI
Vec((1 - x - x^2 - x^3) / ((1 - x)^3*(1 - 2*x)) + O(x^40)) \\ Colin Barker, Jul 18 2018
Formula
Binomial transform of (1, 3, 3, 1, 1, 1, ...).
a(n) = 2^n + n^2 + n. - Michel Marcus, Jul 18 2018
From Colin Barker, Jul 18 2018: (Start)
G.f.: (1 - x - x^2 - x^3) / ((1 - x)^3*(1 - 2*x)).
a(n) = 5*a(n-1) - 9*a(n-2) + 7*a(n-3) - 2*a(n-4) for n>3.
(End)
Extensions
More terms from Vladimir Joseph Stephan Orlovsky, May 07 2010