A131941 Partial sums of ceiling(n^2/2) (A000982).
0, 1, 3, 8, 16, 29, 47, 72, 104, 145, 195, 256, 328, 413, 511, 624, 752, 897, 1059, 1240, 1440, 1661, 1903, 2168, 2456, 2769, 3107, 3472, 3864, 4285, 4735, 5216, 5728, 6273, 6851, 7464, 8112, 8797, 9519, 10280, 11080, 11921, 12803, 13728, 14696, 15709
Offset: 0
Examples
a(3) = 8 = 0 + 1 + 2 + 5.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions, J. Integer Sequences, Vol. 14 (2011), Article 11.9.1, p. 11.
- Index entries for linear recurrences with constant coefficients, signature (3,-2,-2,3,-1).
Programs
-
Magma
[Ceiling((2*n^3+3*n^2+4*n)/12): n in [0..60]]; // Vincenzo Librandi, Jun 25 2011
-
Maple
a(n):=round(1/(12)(2*n^(3)+3*n^(2)+4*n)) # Mircea Merca, Oct 10 2010
-
Mathematica
CoefficientList[Series[x (1 + x^2)/(1 + x)/(1 - x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Mar 26 2014 *) a[n_Integer?Positive] := If[EvenQ[n], With[{m = n/2}, (4 m^3 - 3 m^2 + 2 m)/3], With[{m = (n - 1)/2}, (4 m^3 + 3 m^2 + 2 m)/3]]; Table[a[n], {n, 1, 50}] (* Hilko Koning, Aug 21 2025 *)
-
PARI
a(n) = (n+[0,1][n%2+1]) * (2*n^2 +[3,1][n%2+1]*n +[4,3][n%2+1])/12 \\ Washington Bomfim, Jul 31 2008
Formula
For even n, a(n) = n*(2*n^2 +3*n +4)/12. For odd n, a(n) = (n+1)*(2*n^2 +n +3)/12. - Washington Bomfim, Jul 31 2008
From R. J. Mathar, Feb 24 2010: (Start)
G.f.: x*(1+x^2)/((1+x)*(1-x)^4).
a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5). (End)
From Mircea Merca, Oct 10 2010: (Start)
a(n) = round((2*n^3 + 3*n^2 + 4*n)/12) = round((2*n+1)*(2*n^2 + 3*n + 3)/24) = floor((n+1)*(2*n^2 + n + 3)/12) = ceiling((2*n^3 + 3*n^2 + 4*n)/12).
a(n) = a(n-2) + n^2 - n + 1, n > 1. (End)
a(n) = (2*n*(2*n^2 + 3*n + 4) - 3*(-1)^n + 3)/24. - Bruno Berselli, Dec 07 2010
E.g.f.: (x*(9 + 9*x + 2*x^2)*cosh(x) + (3 + 9*x + 9*x^2 + 2*x^3)*sinh(x))/12. - Stefano Spezia, Dec 21 2021
Comments