cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A154129 a(n) = (A132207(n)-1)/3.

Original entry on oeis.org

0, 1, 2, 6, 3, 7, 4, 8, 5, 9, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31, 16, 32, 17, 33, 18, 34, 19, 35, 20, 36, 21, 37, 22, 38, 23, 39, 24, 40, 25, 41, 42, 106, 43, 107, 44, 108, 45, 109, 46, 110, 47, 111, 48, 112, 49, 113, 50, 114, 51, 115, 52, 116, 53, 117, 54, 118, 55, 119, 56, 120, 57, 121, 58, 122, 59
Offset: 0

Views

Author

Omar E. Pol, Jan 05 2009

Keywords

Crossrefs

Cf. A132207.

Programs

  • Maple
    A132207 := proc(n)
            L := [] ;
            for k from 0 to (2*4^n-1)/2 do
                    L := [op(L),2*4^n+3*k-1,5*4^n+3*k-1] ;
            end do:
    end proc:
    for n from 0 to 3 do
            L := A132207(n) ;
            for l in L do
                    printf("%d,",(l-1)/3) ;
            end do:
    end do:
    # R. J. Mathar, Sep 26 2011

A156760 5*4^n-1.

Original entry on oeis.org

4, 19, 79, 319, 1279, 5119, 20479, 81919, 327679, 1310719, 5242879, 20971519, 83886079, 335544319, 1342177279, 5368709119, 21474836479, 85899345919, 343597383679, 1374389534719, 5497558138879, 21990232555519, 87960930222079, 351843720888319
Offset: 0

Views

Author

Paul Curtz, Feb 15 2009

Keywords

Comments

Second column of the array A132207, or, if this array is flattened, a(n)=A132207(A007583(n)).

Examples

			Binary.......................................Decimal
100................................................4
10011.............................................19
1001111...........................................79
100111111........................................319
10011111111.....................................1279
1001111111111...................................5119
100111111111111................................20479
10011111111111111..............................81919
1001111111111111111...........................327679
100111111111111111111........................1310719
10011111111111111111111......................5242879
1001111111111111111111111...................20971519
100111111111111111111111111.................83886079
10011111111111111111111111111..............335544319
1001111111111111111111111111111...........1342177279
... - _Philippe Deléham_, Feb 23 2014
		

Programs

Formula

a(n) mod 9 = A070403(n+2).
a(n+1) = 10*A083420(n)+9 .
a(n) = 5*A000302(n)-1.
a(n) = ( A024036(n+1)+A140529(n) )/2.
a(n) = 4a(n-1)+3, a(0)=4.
a(n) = A003947(n+1)-1 = 5*a(n-1)-4*a(n-2). G.f.: (4-x)/((1-x)(1-4x)). - R. J. Mathar, Feb 23 2009
a(n) = A198693(n) + 2^(2n+1). - Bob Selcoe, Apr 20 2015

Extensions

Edited and extended by R. J. Mathar, Feb 23 2009
Showing 1-2 of 2 results.