A132262 First term in a sum partition of the even-indexed Fibonacci numbers.
1, 2, 7, 29, 130, 611, 2965, 14726, 74443, 381617, 1978582, 10355303, 54628201, 290148890, 1550177791, 8324934533, 44911554826, 243274479131, 1322555721037, 7213659006350, 39462884371891, 216470673634217, 1190382865461742, 6560913758341199
Offset: 0
Examples
a(3) = 29 because 377 = 29 + 6*18 + 24*6 + 96*1.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Ph. Fahr and C. M. Ringel, A Partition Formula for Fibonacci Numbers, preprint, 2007.
- Ph. Fahr and C. M. Ringel, A Partition Formula for Fibonacci Numbers, Journal of Integer Sequences, Vol. 11 (2008), Article 08.1.4
- Philipp Fahr and Claus Michael Ringel, Categorification of the Fibonacci Numbers Using Representations of Quivers, Journal of Integer Sequences, Vol. 15 (2012), Article 12.2.1.
- Pedro Fernando Fernández Espinosa and Agustín Moreno Cañadas, Homological Ideals as Integer Specializations of Some Brauer Configuration Algebras, arXiv:2104.00050 [math.RT], 2021.
- Michael D. Hirschhorn, On Recurrences of Fahr and Ringel Arising in Graph Theory, Journal of Integer Sequences, Vol. 12 (2009), Article 09.6.8
- Harris Kwong, On recurrences of Fahr and Ringel: an alternate approach, Fibonacci Quart. 48 (2010), no. 4, 363-365.
- A. Moreno Canadas, P. F. Fernandez Espinoza, I. D. M. Gaviria, Categorification of some integer sequences via Kronecker Modules, JP J. Algebra, Number Theory and Applic. 38 (4) (2016) 339-347
- H. Prodinger, Generating functions related to partition formulas for Fibonacci Numbers, JIS 11 (2008) 08.1.8.
Crossrefs
Cf. A110122.
Programs
-
Maple
a:= proc(n) option remember; `if`(n<4, [1, 2, 7, 29][n+1], ((13*n-9)*a(n-1) -(44*n-66)*a(n-2) +(13*n-30)*a(n-3) -(n-3)*a(n-4))/n) end: seq(a(n), n=0..30); # Alois P. Heinz, Jun 19 2013
-
Mathematica
a[n_] := a[n] = If[n<4, {1, 2, 7, 29}[[n+1]], ((13*n-9)*a[n-1] - (44*n-66)*a[n-2] + (13*n-30)*a[n-3] - (n-3)*a[n-4])/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 07 2016, after Alois P. Heinz *)
-
PARI
lista(nn) = my(q = qq + O(qq^nn)); gf = (3*sqrt(1-6*q+q^2) -(1+q))/(2*(1-7*q+q^2)); Vec(gf) \\ Michel Marcus, Jun 19 2013
Formula
G.f.: (3*sqrt(1-6*q+q^2)-(1+q))/(2*(1-7*q+q^2)) = 1 +2q +7q^2 +29q^3 +130q^4 + ... . Michael David Hirschhorn, Sep 03 2009
a(n) ~ 3*sqrt(3*sqrt(2)-4) * (3+2*sqrt(2))^(n+1) / (2*sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Sep 08 2014
D-finite with recurrence n*a(n) + (-13*n+9)*a(n-1) + 22*(2*n-3)*a(n-2) + (-13*n+30)*a(n-3) + (n-3)*a(n-4) = 0. - R. J. Mathar, Aug 28 2015
Comments