cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A132657 a(n) is the product of the least prime > n^2 and the greatest prime < (n+1)^2.

Original entry on oeis.org

6, 35, 143, 391, 899, 1739, 3233, 5293, 8051, 11413, 17653, 24883, 33389, 43931, 56977, 72731, 92881, 118829, 145699, 176039, 212197, 254701, 308911, 357163, 424663, 492179, 566609, 660293, 756611, 864371, 987307, 1120697, 1257923
Offset: 1

Views

Author

Jonathan Vos Post, Nov 15 2007

Keywords

Examples

			a(1) = 6 = 2*3 = (smallest prime in [1^2,2^2]) * (largest prime in [1^2,2^2]).
a(2) = 35 = 5*7 = (smallest prime in [2^2,3^2]) * (largest prime in [2^2,3^2]).
		

Crossrefs

Programs

  • Maple
    seq(nextprime(n^2)*prevprime((n+1)^2,n=1..100); # Robert Israel, Jan 26 2020
  • Mathematica
    Table[Prime[PrimePi[n^2] + 1]*Prime[PrimePi[(n + 1)^2]], {n, 1, 40}] (* Stefan Steinerberger, Nov 20 2007 *)
    NextPrime[#[[1]]]NextPrime[#[[2]],-1]&/@Partition[Range[40]^2,2,1] (* Harvey P. Dale, Aug 27 2022 *)
  • PARI
    for(n=1,33,print1(nextprime(n^2)*precprime((n+1)^2),", ")) \\ Hugo Pfoertner, Jan 26 2020

Formula

a(n) = A007491(n) * A053001(n+1).

Extensions

More terms from Stefan Steinerberger, Nov 20 2007
Showing 1-1 of 1 results.